Loading…
A metadata framework for computational phenotypes
Abstract With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. T...
Saved in:
Published in: | JAMIA open 2023-07, Vol.6 (2), p.ooad032-ooad032 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3 |
container_end_page | ooad032 |
container_issue | 2 |
container_start_page | ooad032 |
container_title | JAMIA open |
container_volume | 6 |
creator | Spotnitz, Matthew Acharya, Nripendra Cimino, James J Murphy, Shawn Namjou, Bahram Crimmins, Nancy Walunas, Theresa Liu, Cong Crosslin, David Benoit, Barbara Rosenthal, Elisabeth Pacheco, Jennifer A Ostropolets, Anna Reyes Nieva, Harry Patterson, Jason S Richter, Lauren R Callahan, Tiffany J Elhussein, Ahmed Pang, Chao Kiryluk, Krzysztof Nestor, Jordan Khan, Atlas Mohan, Sumit Minty, Evan Chung, Wendy Wei, Wei-Qi Natarajan, Karthik Weng, Chunhua |
description | Abstract
With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs.
Lay Summary
Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehens |
doi_str_mv | 10.1093/jamiaopen/ooad032 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10168627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776155164</galeid><oup_id>10.1093/jamiaopen/ooad032</oup_id><sourcerecordid>A776155164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</originalsourceid><addsrcrecordid>eNqNkUtLxDAYRYMoKuoPcCMFNy4czaNt2pUM4gsEN7oOX5MvGm2bmrSK_97IjIOCC8kiITn3JOESss_oCaO1OH2GzoEfsD_1HgwVfI1s80LmM14Itv5jvUX2YnymlLK6rktBN8mWkKxiklfbhM2zDkcwMEJmA3T47sNLZn3ItO-GaYTR-R7abHjC3o8fA8ZdsmGhjbi3nHfIw-XF_fn17Pbu6uZ8fjvTBc3HmclBYikMyKpqrADaWNqYRuY1SGttzVFyg7oxggItKRMV6MKUkEtmuQYQO-Rs4R2mpkOjsR8DtGoIroPwoTw49fukd0_q0b8pRllZlVwmw9HSEPzrhHFUnYsa2xZ69FNUvEq3VnXBeUIPF-gjtKhcb31S6i9czaUsWVGwMk_UyR9UGgY7p32P1qX9XwG2COjgYwxoV89nVH21qFYtqmWLKXPw89-rxHdnCTheAH4a_uH7BDpnq_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813889522</pqid></control><display><type>article</type><title>A metadata framework for computational phenotypes</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Spotnitz, Matthew ; Acharya, Nripendra ; Cimino, James J ; Murphy, Shawn ; Namjou, Bahram ; Crimmins, Nancy ; Walunas, Theresa ; Liu, Cong ; Crosslin, David ; Benoit, Barbara ; Rosenthal, Elisabeth ; Pacheco, Jennifer A ; Ostropolets, Anna ; Reyes Nieva, Harry ; Patterson, Jason S ; Richter, Lauren R ; Callahan, Tiffany J ; Elhussein, Ahmed ; Pang, Chao ; Kiryluk, Krzysztof ; Nestor, Jordan ; Khan, Atlas ; Mohan, Sumit ; Minty, Evan ; Chung, Wendy ; Wei, Wei-Qi ; Natarajan, Karthik ; Weng, Chunhua</creator><creatorcontrib>Spotnitz, Matthew ; Acharya, Nripendra ; Cimino, James J ; Murphy, Shawn ; Namjou, Bahram ; Crimmins, Nancy ; Walunas, Theresa ; Liu, Cong ; Crosslin, David ; Benoit, Barbara ; Rosenthal, Elisabeth ; Pacheco, Jennifer A ; Ostropolets, Anna ; Reyes Nieva, Harry ; Patterson, Jason S ; Richter, Lauren R ; Callahan, Tiffany J ; Elhussein, Ahmed ; Pang, Chao ; Kiryluk, Krzysztof ; Nestor, Jordan ; Khan, Atlas ; Mohan, Sumit ; Minty, Evan ; Chung, Wendy ; Wei, Wei-Qi ; Natarajan, Karthik ; Weng, Chunhua</creatorcontrib><description>Abstract
With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs.
Lay Summary
Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehensive validation methods were strengths of the framework. Using a mixed-methods approach, we have developed a comprehensive framework for defining computational clinical phenotypes. Use of this framework may help curate patient data used for both observational and prospective healthcare research.</description><identifier>ISSN: 2574-2531</identifier><identifier>EISSN: 2574-2531</identifier><identifier>DOI: 10.1093/jamiaopen/ooad032</identifier><identifier>PMID: 37181728</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Brief Communications ; Computational linguistics ; Electronic records ; Language processing ; Market surveys ; Medical colleges ; Medical records ; Medical research ; Medicine, Experimental ; Natural language interfaces ; Phenotype ; Type 2 diabetes</subject><ispartof>JAMIA open, 2023-07, Vol.6 (2), p.ooad032-ooad032</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</citedby><cites>FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</cites><orcidid>0000-0002-0847-6682 ; 0000-0001-7774-2561 ; 0000-0003-1418-3103 ; 0000-0003-2869-0237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37181728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spotnitz, Matthew</creatorcontrib><creatorcontrib>Acharya, Nripendra</creatorcontrib><creatorcontrib>Cimino, James J</creatorcontrib><creatorcontrib>Murphy, Shawn</creatorcontrib><creatorcontrib>Namjou, Bahram</creatorcontrib><creatorcontrib>Crimmins, Nancy</creatorcontrib><creatorcontrib>Walunas, Theresa</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Crosslin, David</creatorcontrib><creatorcontrib>Benoit, Barbara</creatorcontrib><creatorcontrib>Rosenthal, Elisabeth</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Ostropolets, Anna</creatorcontrib><creatorcontrib>Reyes Nieva, Harry</creatorcontrib><creatorcontrib>Patterson, Jason S</creatorcontrib><creatorcontrib>Richter, Lauren R</creatorcontrib><creatorcontrib>Callahan, Tiffany J</creatorcontrib><creatorcontrib>Elhussein, Ahmed</creatorcontrib><creatorcontrib>Pang, Chao</creatorcontrib><creatorcontrib>Kiryluk, Krzysztof</creatorcontrib><creatorcontrib>Nestor, Jordan</creatorcontrib><creatorcontrib>Khan, Atlas</creatorcontrib><creatorcontrib>Mohan, Sumit</creatorcontrib><creatorcontrib>Minty, Evan</creatorcontrib><creatorcontrib>Chung, Wendy</creatorcontrib><creatorcontrib>Wei, Wei-Qi</creatorcontrib><creatorcontrib>Natarajan, Karthik</creatorcontrib><creatorcontrib>Weng, Chunhua</creatorcontrib><title>A metadata framework for computational phenotypes</title><title>JAMIA open</title><addtitle>JAMIA Open</addtitle><description>Abstract
With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs.
Lay Summary
Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehensive validation methods were strengths of the framework. Using a mixed-methods approach, we have developed a comprehensive framework for defining computational clinical phenotypes. Use of this framework may help curate patient data used for both observational and prospective healthcare research.</description><subject>Brief Communications</subject><subject>Computational linguistics</subject><subject>Electronic records</subject><subject>Language processing</subject><subject>Market surveys</subject><subject>Medical colleges</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Natural language interfaces</subject><subject>Phenotype</subject><subject>Type 2 diabetes</subject><issn>2574-2531</issn><issn>2574-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUtLxDAYRYMoKuoPcCMFNy4czaNt2pUM4gsEN7oOX5MvGm2bmrSK_97IjIOCC8kiITn3JOESss_oCaO1OH2GzoEfsD_1HgwVfI1s80LmM14Itv5jvUX2YnymlLK6rktBN8mWkKxiklfbhM2zDkcwMEJmA3T47sNLZn3ItO-GaYTR-R7abHjC3o8fA8ZdsmGhjbi3nHfIw-XF_fn17Pbu6uZ8fjvTBc3HmclBYikMyKpqrADaWNqYRuY1SGttzVFyg7oxggItKRMV6MKUkEtmuQYQO-Rs4R2mpkOjsR8DtGoIroPwoTw49fukd0_q0b8pRllZlVwmw9HSEPzrhHFUnYsa2xZ69FNUvEq3VnXBeUIPF-gjtKhcb31S6i9czaUsWVGwMk_UyR9UGgY7p32P1qX9XwG2COjgYwxoV89nVH21qFYtqmWLKXPw89-rxHdnCTheAH4a_uH7BDpnq_I</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Spotnitz, Matthew</creator><creator>Acharya, Nripendra</creator><creator>Cimino, James J</creator><creator>Murphy, Shawn</creator><creator>Namjou, Bahram</creator><creator>Crimmins, Nancy</creator><creator>Walunas, Theresa</creator><creator>Liu, Cong</creator><creator>Crosslin, David</creator><creator>Benoit, Barbara</creator><creator>Rosenthal, Elisabeth</creator><creator>Pacheco, Jennifer A</creator><creator>Ostropolets, Anna</creator><creator>Reyes Nieva, Harry</creator><creator>Patterson, Jason S</creator><creator>Richter, Lauren R</creator><creator>Callahan, Tiffany J</creator><creator>Elhussein, Ahmed</creator><creator>Pang, Chao</creator><creator>Kiryluk, Krzysztof</creator><creator>Nestor, Jordan</creator><creator>Khan, Atlas</creator><creator>Mohan, Sumit</creator><creator>Minty, Evan</creator><creator>Chung, Wendy</creator><creator>Wei, Wei-Qi</creator><creator>Natarajan, Karthik</creator><creator>Weng, Chunhua</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0847-6682</orcidid><orcidid>https://orcid.org/0000-0001-7774-2561</orcidid><orcidid>https://orcid.org/0000-0003-1418-3103</orcidid><orcidid>https://orcid.org/0000-0003-2869-0237</orcidid></search><sort><creationdate>20230701</creationdate><title>A metadata framework for computational phenotypes</title><author>Spotnitz, Matthew ; Acharya, Nripendra ; Cimino, James J ; Murphy, Shawn ; Namjou, Bahram ; Crimmins, Nancy ; Walunas, Theresa ; Liu, Cong ; Crosslin, David ; Benoit, Barbara ; Rosenthal, Elisabeth ; Pacheco, Jennifer A ; Ostropolets, Anna ; Reyes Nieva, Harry ; Patterson, Jason S ; Richter, Lauren R ; Callahan, Tiffany J ; Elhussein, Ahmed ; Pang, Chao ; Kiryluk, Krzysztof ; Nestor, Jordan ; Khan, Atlas ; Mohan, Sumit ; Minty, Evan ; Chung, Wendy ; Wei, Wei-Qi ; Natarajan, Karthik ; Weng, Chunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brief Communications</topic><topic>Computational linguistics</topic><topic>Electronic records</topic><topic>Language processing</topic><topic>Market surveys</topic><topic>Medical colleges</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Natural language interfaces</topic><topic>Phenotype</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spotnitz, Matthew</creatorcontrib><creatorcontrib>Acharya, Nripendra</creatorcontrib><creatorcontrib>Cimino, James J</creatorcontrib><creatorcontrib>Murphy, Shawn</creatorcontrib><creatorcontrib>Namjou, Bahram</creatorcontrib><creatorcontrib>Crimmins, Nancy</creatorcontrib><creatorcontrib>Walunas, Theresa</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Crosslin, David</creatorcontrib><creatorcontrib>Benoit, Barbara</creatorcontrib><creatorcontrib>Rosenthal, Elisabeth</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Ostropolets, Anna</creatorcontrib><creatorcontrib>Reyes Nieva, Harry</creatorcontrib><creatorcontrib>Patterson, Jason S</creatorcontrib><creatorcontrib>Richter, Lauren R</creatorcontrib><creatorcontrib>Callahan, Tiffany J</creatorcontrib><creatorcontrib>Elhussein, Ahmed</creatorcontrib><creatorcontrib>Pang, Chao</creatorcontrib><creatorcontrib>Kiryluk, Krzysztof</creatorcontrib><creatorcontrib>Nestor, Jordan</creatorcontrib><creatorcontrib>Khan, Atlas</creatorcontrib><creatorcontrib>Mohan, Sumit</creatorcontrib><creatorcontrib>Minty, Evan</creatorcontrib><creatorcontrib>Chung, Wendy</creatorcontrib><creatorcontrib>Wei, Wei-Qi</creatorcontrib><creatorcontrib>Natarajan, Karthik</creatorcontrib><creatorcontrib>Weng, Chunhua</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JAMIA open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spotnitz, Matthew</au><au>Acharya, Nripendra</au><au>Cimino, James J</au><au>Murphy, Shawn</au><au>Namjou, Bahram</au><au>Crimmins, Nancy</au><au>Walunas, Theresa</au><au>Liu, Cong</au><au>Crosslin, David</au><au>Benoit, Barbara</au><au>Rosenthal, Elisabeth</au><au>Pacheco, Jennifer A</au><au>Ostropolets, Anna</au><au>Reyes Nieva, Harry</au><au>Patterson, Jason S</au><au>Richter, Lauren R</au><au>Callahan, Tiffany J</au><au>Elhussein, Ahmed</au><au>Pang, Chao</au><au>Kiryluk, Krzysztof</au><au>Nestor, Jordan</au><au>Khan, Atlas</au><au>Mohan, Sumit</au><au>Minty, Evan</au><au>Chung, Wendy</au><au>Wei, Wei-Qi</au><au>Natarajan, Karthik</au><au>Weng, Chunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A metadata framework for computational phenotypes</atitle><jtitle>JAMIA open</jtitle><addtitle>JAMIA Open</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>ooad032</spage><epage>ooad032</epage><pages>ooad032-ooad032</pages><issn>2574-2531</issn><eissn>2574-2531</eissn><abstract>Abstract
With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs.
Lay Summary
Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehensive validation methods were strengths of the framework. Using a mixed-methods approach, we have developed a comprehensive framework for defining computational clinical phenotypes. Use of this framework may help curate patient data used for both observational and prospective healthcare research.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>37181728</pmid><doi>10.1093/jamiaopen/ooad032</doi><orcidid>https://orcid.org/0000-0002-0847-6682</orcidid><orcidid>https://orcid.org/0000-0001-7774-2561</orcidid><orcidid>https://orcid.org/0000-0003-1418-3103</orcidid><orcidid>https://orcid.org/0000-0003-2869-0237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-2531 |
ispartof | JAMIA open, 2023-07, Vol.6 (2), p.ooad032-ooad032 |
issn | 2574-2531 2574-2531 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10168627 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | Brief Communications Computational linguistics Electronic records Language processing Market surveys Medical colleges Medical records Medical research Medicine, Experimental Natural language interfaces Phenotype Type 2 diabetes |
title | A metadata framework for computational phenotypes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20metadata%20framework%20for%20computational%20phenotypes&rft.jtitle=JAMIA%20open&rft.au=Spotnitz,%20Matthew&rft.date=2023-07-01&rft.volume=6&rft.issue=2&rft.spage=ooad032&rft.epage=ooad032&rft.pages=ooad032-ooad032&rft.issn=2574-2531&rft.eissn=2574-2531&rft_id=info:doi/10.1093/jamiaopen/ooad032&rft_dat=%3Cgale_pubme%3EA776155164%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2813889522&rft_id=info:pmid/37181728&rft_galeid=A776155164&rft_oup_id=10.1093/jamiaopen/ooad032&rfr_iscdi=true |