Loading…

A metadata framework for computational phenotypes

Abstract With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. T...

Full description

Saved in:
Bibliographic Details
Published in:JAMIA open 2023-07, Vol.6 (2), p.ooad032-ooad032
Main Authors: Spotnitz, Matthew, Acharya, Nripendra, Cimino, James J, Murphy, Shawn, Namjou, Bahram, Crimmins, Nancy, Walunas, Theresa, Liu, Cong, Crosslin, David, Benoit, Barbara, Rosenthal, Elisabeth, Pacheco, Jennifer A, Ostropolets, Anna, Reyes Nieva, Harry, Patterson, Jason S, Richter, Lauren R, Callahan, Tiffany J, Elhussein, Ahmed, Pang, Chao, Kiryluk, Krzysztof, Nestor, Jordan, Khan, Atlas, Mohan, Sumit, Minty, Evan, Chung, Wendy, Wei, Wei-Qi, Natarajan, Karthik, Weng, Chunhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3
cites cdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3
container_end_page ooad032
container_issue 2
container_start_page ooad032
container_title JAMIA open
container_volume 6
creator Spotnitz, Matthew
Acharya, Nripendra
Cimino, James J
Murphy, Shawn
Namjou, Bahram
Crimmins, Nancy
Walunas, Theresa
Liu, Cong
Crosslin, David
Benoit, Barbara
Rosenthal, Elisabeth
Pacheco, Jennifer A
Ostropolets, Anna
Reyes Nieva, Harry
Patterson, Jason S
Richter, Lauren R
Callahan, Tiffany J
Elhussein, Ahmed
Pang, Chao
Kiryluk, Krzysztof
Nestor, Jordan
Khan, Atlas
Mohan, Sumit
Minty, Evan
Chung, Wendy
Wei, Wei-Qi
Natarajan, Karthik
Weng, Chunhua
description Abstract With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs. Lay Summary Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehens
doi_str_mv 10.1093/jamiaopen/ooad032
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10168627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776155164</galeid><oup_id>10.1093/jamiaopen/ooad032</oup_id><sourcerecordid>A776155164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</originalsourceid><addsrcrecordid>eNqNkUtLxDAYRYMoKuoPcCMFNy4czaNt2pUM4gsEN7oOX5MvGm2bmrSK_97IjIOCC8kiITn3JOESss_oCaO1OH2GzoEfsD_1HgwVfI1s80LmM14Itv5jvUX2YnymlLK6rktBN8mWkKxiklfbhM2zDkcwMEJmA3T47sNLZn3ItO-GaYTR-R7abHjC3o8fA8ZdsmGhjbi3nHfIw-XF_fn17Pbu6uZ8fjvTBc3HmclBYikMyKpqrADaWNqYRuY1SGttzVFyg7oxggItKRMV6MKUkEtmuQYQO-Rs4R2mpkOjsR8DtGoIroPwoTw49fukd0_q0b8pRllZlVwmw9HSEPzrhHFUnYsa2xZ69FNUvEq3VnXBeUIPF-gjtKhcb31S6i9czaUsWVGwMk_UyR9UGgY7p32P1qX9XwG2COjgYwxoV89nVH21qFYtqmWLKXPw89-rxHdnCTheAH4a_uH7BDpnq_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813889522</pqid></control><display><type>article</type><title>A metadata framework for computational phenotypes</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Spotnitz, Matthew ; Acharya, Nripendra ; Cimino, James J ; Murphy, Shawn ; Namjou, Bahram ; Crimmins, Nancy ; Walunas, Theresa ; Liu, Cong ; Crosslin, David ; Benoit, Barbara ; Rosenthal, Elisabeth ; Pacheco, Jennifer A ; Ostropolets, Anna ; Reyes Nieva, Harry ; Patterson, Jason S ; Richter, Lauren R ; Callahan, Tiffany J ; Elhussein, Ahmed ; Pang, Chao ; Kiryluk, Krzysztof ; Nestor, Jordan ; Khan, Atlas ; Mohan, Sumit ; Minty, Evan ; Chung, Wendy ; Wei, Wei-Qi ; Natarajan, Karthik ; Weng, Chunhua</creator><creatorcontrib>Spotnitz, Matthew ; Acharya, Nripendra ; Cimino, James J ; Murphy, Shawn ; Namjou, Bahram ; Crimmins, Nancy ; Walunas, Theresa ; Liu, Cong ; Crosslin, David ; Benoit, Barbara ; Rosenthal, Elisabeth ; Pacheco, Jennifer A ; Ostropolets, Anna ; Reyes Nieva, Harry ; Patterson, Jason S ; Richter, Lauren R ; Callahan, Tiffany J ; Elhussein, Ahmed ; Pang, Chao ; Kiryluk, Krzysztof ; Nestor, Jordan ; Khan, Atlas ; Mohan, Sumit ; Minty, Evan ; Chung, Wendy ; Wei, Wei-Qi ; Natarajan, Karthik ; Weng, Chunhua</creatorcontrib><description>Abstract With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs. Lay Summary Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehensive validation methods were strengths of the framework. Using a mixed-methods approach, we have developed a comprehensive framework for defining computational clinical phenotypes. Use of this framework may help curate patient data used for both observational and prospective healthcare research.</description><identifier>ISSN: 2574-2531</identifier><identifier>EISSN: 2574-2531</identifier><identifier>DOI: 10.1093/jamiaopen/ooad032</identifier><identifier>PMID: 37181728</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Brief Communications ; Computational linguistics ; Electronic records ; Language processing ; Market surveys ; Medical colleges ; Medical records ; Medical research ; Medicine, Experimental ; Natural language interfaces ; Phenotype ; Type 2 diabetes</subject><ispartof>JAMIA open, 2023-07, Vol.6 (2), p.ooad032-ooad032</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</citedby><cites>FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</cites><orcidid>0000-0002-0847-6682 ; 0000-0001-7774-2561 ; 0000-0003-1418-3103 ; 0000-0003-2869-0237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37181728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spotnitz, Matthew</creatorcontrib><creatorcontrib>Acharya, Nripendra</creatorcontrib><creatorcontrib>Cimino, James J</creatorcontrib><creatorcontrib>Murphy, Shawn</creatorcontrib><creatorcontrib>Namjou, Bahram</creatorcontrib><creatorcontrib>Crimmins, Nancy</creatorcontrib><creatorcontrib>Walunas, Theresa</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Crosslin, David</creatorcontrib><creatorcontrib>Benoit, Barbara</creatorcontrib><creatorcontrib>Rosenthal, Elisabeth</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Ostropolets, Anna</creatorcontrib><creatorcontrib>Reyes Nieva, Harry</creatorcontrib><creatorcontrib>Patterson, Jason S</creatorcontrib><creatorcontrib>Richter, Lauren R</creatorcontrib><creatorcontrib>Callahan, Tiffany J</creatorcontrib><creatorcontrib>Elhussein, Ahmed</creatorcontrib><creatorcontrib>Pang, Chao</creatorcontrib><creatorcontrib>Kiryluk, Krzysztof</creatorcontrib><creatorcontrib>Nestor, Jordan</creatorcontrib><creatorcontrib>Khan, Atlas</creatorcontrib><creatorcontrib>Mohan, Sumit</creatorcontrib><creatorcontrib>Minty, Evan</creatorcontrib><creatorcontrib>Chung, Wendy</creatorcontrib><creatorcontrib>Wei, Wei-Qi</creatorcontrib><creatorcontrib>Natarajan, Karthik</creatorcontrib><creatorcontrib>Weng, Chunhua</creatorcontrib><title>A metadata framework for computational phenotypes</title><title>JAMIA open</title><addtitle>JAMIA Open</addtitle><description>Abstract With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs. Lay Summary Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehensive validation methods were strengths of the framework. Using a mixed-methods approach, we have developed a comprehensive framework for defining computational clinical phenotypes. Use of this framework may help curate patient data used for both observational and prospective healthcare research.</description><subject>Brief Communications</subject><subject>Computational linguistics</subject><subject>Electronic records</subject><subject>Language processing</subject><subject>Market surveys</subject><subject>Medical colleges</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Natural language interfaces</subject><subject>Phenotype</subject><subject>Type 2 diabetes</subject><issn>2574-2531</issn><issn>2574-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUtLxDAYRYMoKuoPcCMFNy4czaNt2pUM4gsEN7oOX5MvGm2bmrSK_97IjIOCC8kiITn3JOESss_oCaO1OH2GzoEfsD_1HgwVfI1s80LmM14Itv5jvUX2YnymlLK6rktBN8mWkKxiklfbhM2zDkcwMEJmA3T47sNLZn3ItO-GaYTR-R7abHjC3o8fA8ZdsmGhjbi3nHfIw-XF_fn17Pbu6uZ8fjvTBc3HmclBYikMyKpqrADaWNqYRuY1SGttzVFyg7oxggItKRMV6MKUkEtmuQYQO-Rs4R2mpkOjsR8DtGoIroPwoTw49fukd0_q0b8pRllZlVwmw9HSEPzrhHFUnYsa2xZ69FNUvEq3VnXBeUIPF-gjtKhcb31S6i9czaUsWVGwMk_UyR9UGgY7p32P1qX9XwG2COjgYwxoV89nVH21qFYtqmWLKXPw89-rxHdnCTheAH4a_uH7BDpnq_I</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Spotnitz, Matthew</creator><creator>Acharya, Nripendra</creator><creator>Cimino, James J</creator><creator>Murphy, Shawn</creator><creator>Namjou, Bahram</creator><creator>Crimmins, Nancy</creator><creator>Walunas, Theresa</creator><creator>Liu, Cong</creator><creator>Crosslin, David</creator><creator>Benoit, Barbara</creator><creator>Rosenthal, Elisabeth</creator><creator>Pacheco, Jennifer A</creator><creator>Ostropolets, Anna</creator><creator>Reyes Nieva, Harry</creator><creator>Patterson, Jason S</creator><creator>Richter, Lauren R</creator><creator>Callahan, Tiffany J</creator><creator>Elhussein, Ahmed</creator><creator>Pang, Chao</creator><creator>Kiryluk, Krzysztof</creator><creator>Nestor, Jordan</creator><creator>Khan, Atlas</creator><creator>Mohan, Sumit</creator><creator>Minty, Evan</creator><creator>Chung, Wendy</creator><creator>Wei, Wei-Qi</creator><creator>Natarajan, Karthik</creator><creator>Weng, Chunhua</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0847-6682</orcidid><orcidid>https://orcid.org/0000-0001-7774-2561</orcidid><orcidid>https://orcid.org/0000-0003-1418-3103</orcidid><orcidid>https://orcid.org/0000-0003-2869-0237</orcidid></search><sort><creationdate>20230701</creationdate><title>A metadata framework for computational phenotypes</title><author>Spotnitz, Matthew ; Acharya, Nripendra ; Cimino, James J ; Murphy, Shawn ; Namjou, Bahram ; Crimmins, Nancy ; Walunas, Theresa ; Liu, Cong ; Crosslin, David ; Benoit, Barbara ; Rosenthal, Elisabeth ; Pacheco, Jennifer A ; Ostropolets, Anna ; Reyes Nieva, Harry ; Patterson, Jason S ; Richter, Lauren R ; Callahan, Tiffany J ; Elhussein, Ahmed ; Pang, Chao ; Kiryluk, Krzysztof ; Nestor, Jordan ; Khan, Atlas ; Mohan, Sumit ; Minty, Evan ; Chung, Wendy ; Wei, Wei-Qi ; Natarajan, Karthik ; Weng, Chunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brief Communications</topic><topic>Computational linguistics</topic><topic>Electronic records</topic><topic>Language processing</topic><topic>Market surveys</topic><topic>Medical colleges</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Natural language interfaces</topic><topic>Phenotype</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spotnitz, Matthew</creatorcontrib><creatorcontrib>Acharya, Nripendra</creatorcontrib><creatorcontrib>Cimino, James J</creatorcontrib><creatorcontrib>Murphy, Shawn</creatorcontrib><creatorcontrib>Namjou, Bahram</creatorcontrib><creatorcontrib>Crimmins, Nancy</creatorcontrib><creatorcontrib>Walunas, Theresa</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Crosslin, David</creatorcontrib><creatorcontrib>Benoit, Barbara</creatorcontrib><creatorcontrib>Rosenthal, Elisabeth</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Ostropolets, Anna</creatorcontrib><creatorcontrib>Reyes Nieva, Harry</creatorcontrib><creatorcontrib>Patterson, Jason S</creatorcontrib><creatorcontrib>Richter, Lauren R</creatorcontrib><creatorcontrib>Callahan, Tiffany J</creatorcontrib><creatorcontrib>Elhussein, Ahmed</creatorcontrib><creatorcontrib>Pang, Chao</creatorcontrib><creatorcontrib>Kiryluk, Krzysztof</creatorcontrib><creatorcontrib>Nestor, Jordan</creatorcontrib><creatorcontrib>Khan, Atlas</creatorcontrib><creatorcontrib>Mohan, Sumit</creatorcontrib><creatorcontrib>Minty, Evan</creatorcontrib><creatorcontrib>Chung, Wendy</creatorcontrib><creatorcontrib>Wei, Wei-Qi</creatorcontrib><creatorcontrib>Natarajan, Karthik</creatorcontrib><creatorcontrib>Weng, Chunhua</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JAMIA open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spotnitz, Matthew</au><au>Acharya, Nripendra</au><au>Cimino, James J</au><au>Murphy, Shawn</au><au>Namjou, Bahram</au><au>Crimmins, Nancy</au><au>Walunas, Theresa</au><au>Liu, Cong</au><au>Crosslin, David</au><au>Benoit, Barbara</au><au>Rosenthal, Elisabeth</au><au>Pacheco, Jennifer A</au><au>Ostropolets, Anna</au><au>Reyes Nieva, Harry</au><au>Patterson, Jason S</au><au>Richter, Lauren R</au><au>Callahan, Tiffany J</au><au>Elhussein, Ahmed</au><au>Pang, Chao</au><au>Kiryluk, Krzysztof</au><au>Nestor, Jordan</au><au>Khan, Atlas</au><au>Mohan, Sumit</au><au>Minty, Evan</au><au>Chung, Wendy</au><au>Wei, Wei-Qi</au><au>Natarajan, Karthik</au><au>Weng, Chunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A metadata framework for computational phenotypes</atitle><jtitle>JAMIA open</jtitle><addtitle>JAMIA Open</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>ooad032</spage><epage>ooad032</epage><pages>ooad032-ooad032</pages><issn>2574-2531</issn><eissn>2574-2531</eissn><abstract>Abstract With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs. Lay Summary Computational phenotypes are essential to scale precision medicine and observational healthcare research. More comprehensive and explicitly defined phenotype metadata could improve phenotype retrieval, reuse, and sharing. However, few studies have focused directly on phenotype metadata explicitness or validation methods and metrics. We designed a phenotype metadata framework as part of ongoing research with the Electronic Medical Records and Genomics (eMERGE) network phenotyping working group. We identified 39 metadata elements based on group consensus. We distributed a survey to 47 new researchers that rated the usefulness of each metadata element on a scale of 1–5, and conducted a thematic analysis of the free-text survey questions. Two researchers annotated 8 type-2 diabetes mellitus phenotypes with the framework. More than 90% of respondents assigned a rating of 4–5 to metadata framework elements regarding phenotype definition and validation metrics. In our thematic analysis, explicit descriptions, compliance with data standards, and comprehensive validation methods were strengths of the framework. Using a mixed-methods approach, we have developed a comprehensive framework for defining computational clinical phenotypes. Use of this framework may help curate patient data used for both observational and prospective healthcare research.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>37181728</pmid><doi>10.1093/jamiaopen/ooad032</doi><orcidid>https://orcid.org/0000-0002-0847-6682</orcidid><orcidid>https://orcid.org/0000-0001-7774-2561</orcidid><orcidid>https://orcid.org/0000-0003-1418-3103</orcidid><orcidid>https://orcid.org/0000-0003-2869-0237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-2531
ispartof JAMIA open, 2023-07, Vol.6 (2), p.ooad032-ooad032
issn 2574-2531
2574-2531
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10168627
source Oxford Journals Open Access Collection; PubMed Central
subjects Brief Communications
Computational linguistics
Electronic records
Language processing
Market surveys
Medical colleges
Medical records
Medical research
Medicine, Experimental
Natural language interfaces
Phenotype
Type 2 diabetes
title A metadata framework for computational phenotypes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20metadata%20framework%20for%20computational%20phenotypes&rft.jtitle=JAMIA%20open&rft.au=Spotnitz,%20Matthew&rft.date=2023-07-01&rft.volume=6&rft.issue=2&rft.spage=ooad032&rft.epage=ooad032&rft.pages=ooad032-ooad032&rft.issn=2574-2531&rft.eissn=2574-2531&rft_id=info:doi/10.1093/jamiaopen/ooad032&rft_dat=%3Cgale_pubme%3EA776155164%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-d4a7e63da788bf3a0bf0bdb749a7fff92e72decbd30a060138ac5d6a471f2caa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2813889522&rft_id=info:pmid/37181728&rft_galeid=A776155164&rft_oup_id=10.1093/jamiaopen/ooad032&rfr_iscdi=true