Loading…

Astragalus polysaccharide ameliorates steroid-induced osteonecrosis of the femoral head by regulating miR-200b-3p-mediated Wnt/β-catenin signaling pathway via inhibiting SP1 expression : Astragalus polysaccharide regulates SONFH via SP1

Steroid-induced osteonecrosis of the femoral head (SONFH) is the necrosis of the femur bone caused by prolonged and massive use of corticosteroids. The present study probed into the significance of Astragalus polysaccharide (APS) in SONFH progression. SONFH cell model was constructed using murine lo...

Full description

Saved in:
Bibliographic Details
Published in:BMC musculoskeletal disorders 2023-05, Vol.24 (1), p.369-369, Article 369
Main Authors: Zhang, Shenyao, Dong, Kefang, Zeng, Xiangjing, Wang, Fan, Lu, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steroid-induced osteonecrosis of the femoral head (SONFH) is the necrosis of the femur bone caused by prolonged and massive use of corticosteroids. The present study probed into the significance of Astragalus polysaccharide (APS) in SONFH progression. SONFH cell model was constructed using murine long bone osteocyte Y4 (MLO-Y4) cells and then treated with APS. mRNA microarray analysis selected differentially expressed genes between control group and SONFH group. RT-qPCR determined SP1 and miR-200b-3p expression. Levels of SP1, β-catenin, autophagy-related proteins (LC3II/LC3I, Beclin1, p62) and apoptosis-related proteins (Bax, C-caspase3, C-caspase9, Bcl-2) were tested by Western blot. ChIP and luciferase reporter assays confirmed relationship between SP1 and miR-200b-3p. Fluorescence intensity of LC3 in cells was detected by immunofluorescence. Flow cytometry assessed cell apoptosis. Osteonecrosis tissues from SONFH mice were examined by HE and TRAP staining. APS induced autophagy and suppressed apoptosis in SONFH cell model. APS inhibited SP1 expression and SP1 overexpression reversed effects of APS on SONFH cell model. Mechanistically, SP1 targeted miR-200b-3p to inhibit Wnt/β-catenin pathway. MiR-200b-3p depletion rescued the promoting effect of SP1 on SONFH cell model by activating Wnt/β-catenin pathway. HE staining showed that APS treatment reduced the empty lacunae and alleviated inflammation in trabecular bone of SONFH mice. TRAP staining revealed decreased osteoclasts number in SONFH mice after APS treatment. APS regulated osteocyte autophagy and apoptosis via SP1/miR-200b-3p axis and activated Wnt/β-catenin signaling, thereby alleviating SONFH, shedding new insights for therapy of SONFH.
ISSN:1471-2474
1471-2474
DOI:10.1186/s12891-023-06447-1