Loading…

Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots

Nitrogen-doped graphene quantum dots (NGQDs) have gained significant attention due to their various physical and chemical properties; however, there is a gap in the study of NGQDs' magnetic properties. This work adds to the efforts of bridging the gap by demonstrating the room temperature param...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2023-04, Vol.16 (9), p.3410
Main Authors: Inbanathan, Flavia P N, Cimatu, Katherine Leslee A, Ingram, David C, Erasquin, Uriel Joseph, Dasari, Kiran, Sultan, Muhammad Shehzad, Sajjad, Muhammad, Makarov, Vladimir, Weiner, Brad R, Morell, Gerardo, Sharifi Abdar, Payman, Jadwisienczak, Wojciech M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-5d304d39fbb9f88fc1a5ad89de3f7f677520911faedbd4658d8ab6cbac843d93
cites cdi_FETCH-LOGICAL-c446t-5d304d39fbb9f88fc1a5ad89de3f7f677520911faedbd4658d8ab6cbac843d93
container_end_page
container_issue 9
container_start_page 3410
container_title Materials
container_volume 16
creator Inbanathan, Flavia P N
Cimatu, Katherine Leslee A
Ingram, David C
Erasquin, Uriel Joseph
Dasari, Kiran
Sultan, Muhammad Shehzad
Sajjad, Muhammad
Makarov, Vladimir
Weiner, Brad R
Morell, Gerardo
Sharifi Abdar, Payman
Jadwisienczak, Wojciech M
description Nitrogen-doped graphene quantum dots (NGQDs) have gained significant attention due to their various physical and chemical properties; however, there is a gap in the study of NGQDs' magnetic properties. This work adds to the efforts of bridging the gap by demonstrating the room temperature paramagnetism in GQDs doped with Nitrogen up to 3.26 at.%. The focus of this experimental work was to confirm the paramagnetic behavior of metal free NGQDs resulting from the pyridinic N configuration in the GQDs host. Metal-free nitrogen-doped NGQDs were synthesized using glucose and liquid ammonia as precursors by microwave-assisted synthesis. This was followed by dialysis filtration. The morphology, optical, and magnetic properties of the synthesized NGQDs were characterized carefully through atomic force microscopy (AFM), transmission electron microscopy (TEM)), UV-VIS spectroscopy, fluorescence, X-ray photon spectroscopy (XPS), and vibrating sample magnetometer (VSM). The high-resolution TEM analysis of NGQDs showed that the NGQDs have a hexagonal crystalline structure with a lattice fringe of ~0.24 nm of (1120) graphene plane. The N1s peak using XPS was assigned to pyridinic, pyrrolic, graphitic, and oxygenated NGQDs. The magnetic study showed the room-temperature paramagnetic behavior of NGQDs with pyridinic N configuration, which was found to have a magnetization of 20.8 emu/g.
doi_str_mv 10.3390/ma16093410
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10179833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749097955</galeid><sourcerecordid>A749097955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-5d304d39fbb9f88fc1a5ad89de3f7f677520911faedbd4658d8ab6cbac843d93</originalsourceid><addsrcrecordid>eNpdkV1vFSEQhjdGY5vaG3-A2cQbY7IVFpZdrkzT2mrS-hEbb8ksDOfQ7MIpsDX118vJqbUKF0yYZ95heKvqJSVHjEnybgYqiGSckifVPpVSNFRy_vRRvFcdpnRNymKMDq18Xu2xnvailXS_-vEVIsyw8phdmmvn60unY_gJt9h8v_N5jcn9QlNfYoapOYuI9WeXY1ihb07DpmTOI2zW6LH-toDPy1yfhpxeVM8sTAkP78-D6ursw9XJx-biy_mnk-OLRnMuctMZRrhh0o6jtMNgNYUOzCANMttb0fddSySlFtCMhotuMAOMQo-gB86MZAfV-53sZhlnNBp9jjCpTXQzxDsVwKl_M96t1SrcKkpoLwfGisKbe4UYbhZMWc0uaZwm8BiWpNqBsk4wLrfNXv-HXocl-jLelmoFbXkrCnW0o1YwoXLehtJYl21wdjp4tK7cH_dcEtnLrisFb3cF5dtTimgfnk-J2lqs_lpc4FePB35A_xjKfgPgOqIM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812612426</pqid></control><display><type>article</type><title>Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Inbanathan, Flavia P N ; Cimatu, Katherine Leslee A ; Ingram, David C ; Erasquin, Uriel Joseph ; Dasari, Kiran ; Sultan, Muhammad Shehzad ; Sajjad, Muhammad ; Makarov, Vladimir ; Weiner, Brad R ; Morell, Gerardo ; Sharifi Abdar, Payman ; Jadwisienczak, Wojciech M</creator><creatorcontrib>Inbanathan, Flavia P N ; Cimatu, Katherine Leslee A ; Ingram, David C ; Erasquin, Uriel Joseph ; Dasari, Kiran ; Sultan, Muhammad Shehzad ; Sajjad, Muhammad ; Makarov, Vladimir ; Weiner, Brad R ; Morell, Gerardo ; Sharifi Abdar, Payman ; Jadwisienczak, Wojciech M</creatorcontrib><description>Nitrogen-doped graphene quantum dots (NGQDs) have gained significant attention due to their various physical and chemical properties; however, there is a gap in the study of NGQDs' magnetic properties. This work adds to the efforts of bridging the gap by demonstrating the room temperature paramagnetism in GQDs doped with Nitrogen up to 3.26 at.%. The focus of this experimental work was to confirm the paramagnetic behavior of metal free NGQDs resulting from the pyridinic N configuration in the GQDs host. Metal-free nitrogen-doped NGQDs were synthesized using glucose and liquid ammonia as precursors by microwave-assisted synthesis. This was followed by dialysis filtration. The morphology, optical, and magnetic properties of the synthesized NGQDs were characterized carefully through atomic force microscopy (AFM), transmission electron microscopy (TEM)), UV-VIS spectroscopy, fluorescence, X-ray photon spectroscopy (XPS), and vibrating sample magnetometer (VSM). The high-resolution TEM analysis of NGQDs showed that the NGQDs have a hexagonal crystalline structure with a lattice fringe of ~0.24 nm of (1120) graphene plane. The N1s peak using XPS was assigned to pyridinic, pyrrolic, graphitic, and oxygenated NGQDs. The magnetic study showed the room-temperature paramagnetic behavior of NGQDs with pyridinic N configuration, which was found to have a magnetization of 20.8 emu/g.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16093410</identifier><identifier>PMID: 37176291</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ammonia ; Atomic force microscopy ; Atoms &amp; subatomic particles ; Boron nitride ; Chemical properties ; Configurations ; Crystals ; Graphene ; Graphite ; Heat ; Liquid ammonia ; Magnetic fields ; Magnetic properties ; Magnetism ; Magnetization ; Magnetometers ; Microwaves ; Morphology ; Nitrogen ; Optical properties ; Paramagnetism ; Particle size ; Quantum dots ; Room temperature ; Solvents ; Spectrum analysis ; Structure ; Synthesis ; Transmission electron microscopy ; X ray photoelectron spectroscopy</subject><ispartof>Materials, 2023-04, Vol.16 (9), p.3410</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-5d304d39fbb9f88fc1a5ad89de3f7f677520911faedbd4658d8ab6cbac843d93</citedby><cites>FETCH-LOGICAL-c446t-5d304d39fbb9f88fc1a5ad89de3f7f677520911faedbd4658d8ab6cbac843d93</cites><orcidid>0000-0002-8735-0171 ; 0000-0003-0281-8562 ; 0000-0003-4787-2239 ; 0000-0003-4072-8293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812612426/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812612426?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37176291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inbanathan, Flavia P N</creatorcontrib><creatorcontrib>Cimatu, Katherine Leslee A</creatorcontrib><creatorcontrib>Ingram, David C</creatorcontrib><creatorcontrib>Erasquin, Uriel Joseph</creatorcontrib><creatorcontrib>Dasari, Kiran</creatorcontrib><creatorcontrib>Sultan, Muhammad Shehzad</creatorcontrib><creatorcontrib>Sajjad, Muhammad</creatorcontrib><creatorcontrib>Makarov, Vladimir</creatorcontrib><creatorcontrib>Weiner, Brad R</creatorcontrib><creatorcontrib>Morell, Gerardo</creatorcontrib><creatorcontrib>Sharifi Abdar, Payman</creatorcontrib><creatorcontrib>Jadwisienczak, Wojciech M</creatorcontrib><title>Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Nitrogen-doped graphene quantum dots (NGQDs) have gained significant attention due to their various physical and chemical properties; however, there is a gap in the study of NGQDs' magnetic properties. This work adds to the efforts of bridging the gap by demonstrating the room temperature paramagnetism in GQDs doped with Nitrogen up to 3.26 at.%. The focus of this experimental work was to confirm the paramagnetic behavior of metal free NGQDs resulting from the pyridinic N configuration in the GQDs host. Metal-free nitrogen-doped NGQDs were synthesized using glucose and liquid ammonia as precursors by microwave-assisted synthesis. This was followed by dialysis filtration. The morphology, optical, and magnetic properties of the synthesized NGQDs were characterized carefully through atomic force microscopy (AFM), transmission electron microscopy (TEM)), UV-VIS spectroscopy, fluorescence, X-ray photon spectroscopy (XPS), and vibrating sample magnetometer (VSM). The high-resolution TEM analysis of NGQDs showed that the NGQDs have a hexagonal crystalline structure with a lattice fringe of ~0.24 nm of (1120) graphene plane. The N1s peak using XPS was assigned to pyridinic, pyrrolic, graphitic, and oxygenated NGQDs. The magnetic study showed the room-temperature paramagnetic behavior of NGQDs with pyridinic N configuration, which was found to have a magnetization of 20.8 emu/g.</description><subject>Ammonia</subject><subject>Atomic force microscopy</subject><subject>Atoms &amp; subatomic particles</subject><subject>Boron nitride</subject><subject>Chemical properties</subject><subject>Configurations</subject><subject>Crystals</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat</subject><subject>Liquid ammonia</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetometers</subject><subject>Microwaves</subject><subject>Morphology</subject><subject>Nitrogen</subject><subject>Optical properties</subject><subject>Paramagnetism</subject><subject>Particle size</subject><subject>Quantum dots</subject><subject>Room temperature</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Structure</subject><subject>Synthesis</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV1vFSEQhjdGY5vaG3-A2cQbY7IVFpZdrkzT2mrS-hEbb8ksDOfQ7MIpsDX118vJqbUKF0yYZ95heKvqJSVHjEnybgYqiGSckifVPpVSNFRy_vRRvFcdpnRNymKMDq18Xu2xnvailXS_-vEVIsyw8phdmmvn60unY_gJt9h8v_N5jcn9QlNfYoapOYuI9WeXY1ihb07DpmTOI2zW6LH-toDPy1yfhpxeVM8sTAkP78-D6ursw9XJx-biy_mnk-OLRnMuctMZRrhh0o6jtMNgNYUOzCANMttb0fddSySlFtCMhotuMAOMQo-gB86MZAfV-53sZhlnNBp9jjCpTXQzxDsVwKl_M96t1SrcKkpoLwfGisKbe4UYbhZMWc0uaZwm8BiWpNqBsk4wLrfNXv-HXocl-jLelmoFbXkrCnW0o1YwoXLehtJYl21wdjp4tK7cH_dcEtnLrisFb3cF5dtTimgfnk-J2lqs_lpc4FePB35A_xjKfgPgOqIM</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Inbanathan, Flavia P N</creator><creator>Cimatu, Katherine Leslee A</creator><creator>Ingram, David C</creator><creator>Erasquin, Uriel Joseph</creator><creator>Dasari, Kiran</creator><creator>Sultan, Muhammad Shehzad</creator><creator>Sajjad, Muhammad</creator><creator>Makarov, Vladimir</creator><creator>Weiner, Brad R</creator><creator>Morell, Gerardo</creator><creator>Sharifi Abdar, Payman</creator><creator>Jadwisienczak, Wojciech M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8735-0171</orcidid><orcidid>https://orcid.org/0000-0003-0281-8562</orcidid><orcidid>https://orcid.org/0000-0003-4787-2239</orcidid><orcidid>https://orcid.org/0000-0003-4072-8293</orcidid></search><sort><creationdate>20230427</creationdate><title>Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots</title><author>Inbanathan, Flavia P N ; Cimatu, Katherine Leslee A ; Ingram, David C ; Erasquin, Uriel Joseph ; Dasari, Kiran ; Sultan, Muhammad Shehzad ; Sajjad, Muhammad ; Makarov, Vladimir ; Weiner, Brad R ; Morell, Gerardo ; Sharifi Abdar, Payman ; Jadwisienczak, Wojciech M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-5d304d39fbb9f88fc1a5ad89de3f7f677520911faedbd4658d8ab6cbac843d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Atomic force microscopy</topic><topic>Atoms &amp; subatomic particles</topic><topic>Boron nitride</topic><topic>Chemical properties</topic><topic>Configurations</topic><topic>Crystals</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat</topic><topic>Liquid ammonia</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetometers</topic><topic>Microwaves</topic><topic>Morphology</topic><topic>Nitrogen</topic><topic>Optical properties</topic><topic>Paramagnetism</topic><topic>Particle size</topic><topic>Quantum dots</topic><topic>Room temperature</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Structure</topic><topic>Synthesis</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inbanathan, Flavia P N</creatorcontrib><creatorcontrib>Cimatu, Katherine Leslee A</creatorcontrib><creatorcontrib>Ingram, David C</creatorcontrib><creatorcontrib>Erasquin, Uriel Joseph</creatorcontrib><creatorcontrib>Dasari, Kiran</creatorcontrib><creatorcontrib>Sultan, Muhammad Shehzad</creatorcontrib><creatorcontrib>Sajjad, Muhammad</creatorcontrib><creatorcontrib>Makarov, Vladimir</creatorcontrib><creatorcontrib>Weiner, Brad R</creatorcontrib><creatorcontrib>Morell, Gerardo</creatorcontrib><creatorcontrib>Sharifi Abdar, Payman</creatorcontrib><creatorcontrib>Jadwisienczak, Wojciech M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inbanathan, Flavia P N</au><au>Cimatu, Katherine Leslee A</au><au>Ingram, David C</au><au>Erasquin, Uriel Joseph</au><au>Dasari, Kiran</au><au>Sultan, Muhammad Shehzad</au><au>Sajjad, Muhammad</au><au>Makarov, Vladimir</au><au>Weiner, Brad R</au><au>Morell, Gerardo</au><au>Sharifi Abdar, Payman</au><au>Jadwisienczak, Wojciech M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>16</volume><issue>9</issue><spage>3410</spage><pages>3410-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Nitrogen-doped graphene quantum dots (NGQDs) have gained significant attention due to their various physical and chemical properties; however, there is a gap in the study of NGQDs' magnetic properties. This work adds to the efforts of bridging the gap by demonstrating the room temperature paramagnetism in GQDs doped with Nitrogen up to 3.26 at.%. The focus of this experimental work was to confirm the paramagnetic behavior of metal free NGQDs resulting from the pyridinic N configuration in the GQDs host. Metal-free nitrogen-doped NGQDs were synthesized using glucose and liquid ammonia as precursors by microwave-assisted synthesis. This was followed by dialysis filtration. The morphology, optical, and magnetic properties of the synthesized NGQDs were characterized carefully through atomic force microscopy (AFM), transmission electron microscopy (TEM)), UV-VIS spectroscopy, fluorescence, X-ray photon spectroscopy (XPS), and vibrating sample magnetometer (VSM). The high-resolution TEM analysis of NGQDs showed that the NGQDs have a hexagonal crystalline structure with a lattice fringe of ~0.24 nm of (1120) graphene plane. The N1s peak using XPS was assigned to pyridinic, pyrrolic, graphitic, and oxygenated NGQDs. The magnetic study showed the room-temperature paramagnetic behavior of NGQDs with pyridinic N configuration, which was found to have a magnetization of 20.8 emu/g.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37176291</pmid><doi>10.3390/ma16093410</doi><orcidid>https://orcid.org/0000-0002-8735-0171</orcidid><orcidid>https://orcid.org/0000-0003-0281-8562</orcidid><orcidid>https://orcid.org/0000-0003-4787-2239</orcidid><orcidid>https://orcid.org/0000-0003-4072-8293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-04, Vol.16 (9), p.3410
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10179833
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Ammonia
Atomic force microscopy
Atoms & subatomic particles
Boron nitride
Chemical properties
Configurations
Crystals
Graphene
Graphite
Heat
Liquid ammonia
Magnetic fields
Magnetic properties
Magnetism
Magnetization
Magnetometers
Microwaves
Morphology
Nitrogen
Optical properties
Paramagnetism
Particle size
Quantum dots
Room temperature
Solvents
Spectrum analysis
Structure
Synthesis
Transmission electron microscopy
X ray photoelectron spectroscopy
title Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paramagnetism%20in%20Microwave-Synthesized%20Metal-Free%20Nitrogen-Doped%20Graphene%20Quantum%20Dots&rft.jtitle=Materials&rft.au=Inbanathan,%20Flavia%20P%20N&rft.date=2023-04-27&rft.volume=16&rft.issue=9&rft.spage=3410&rft.pages=3410-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16093410&rft_dat=%3Cgale_pubme%3EA749097955%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-5d304d39fbb9f88fc1a5ad89de3f7f677520911faedbd4658d8ab6cbac843d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812612426&rft_id=info:pmid/37176291&rft_galeid=A749097955&rfr_iscdi=true