Loading…

Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation

Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2023-04, Vol.16 (9), p.3414
Main Authors: Li, Zhidong, Xie, Zhibin, Li, Weibang, Aziz, Hafiz Sartaj, Abbas, Muhammad, Zheng, Zhuanghao, Su, Zhenghua, Fan, Ping, Chen, Shuo, Liang, Guangxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893
cites cdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893
container_end_page
container_issue 9
container_start_page 3414
container_title Materials
container_volume 16
creator Li, Zhidong
Xie, Zhibin
Li, Weibang
Aziz, Hafiz Sartaj
Abbas, Muhammad
Zheng, Zhuanghao
Su, Zhenghua
Fan, Ping
Chen, Shuo
Liang, Guangxing
description Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.
doi_str_mv 10.3390/ma16093414
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812734295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxUVJqI3jSz-BoJcQcKJ_q12dSmLcJBBwoU56FLNayZbZlRxpHZpv3zUxbZq5zMD8eLw3g9AXSi45V-SqAyqJ4oKKT2hMlZIzqoQ4eTeP0DTnLRmKc1ox9RmNeElLyVQxRqv5BtLa4lWCkHcx9XgRNhCM7WzosQ_4xj8tBf6xiX2EEBuLXUx44Zw3_kD8jC0k_At6m_Dyt2-g9zGcoVMHbbbTY5-gx--L1fxu9rC8vZ9fP8wMr0Q_M6IRElzjbF0pyXlhCNQgi8LAEE02gtZFWTPHaG1lxYktnWNMUF7KUohK8Qn69qa729edbcxgKEGrd8l3kF51BK__3wS_0ev4oimhFRGsGBTOjwopPu9t7nXns7FtC8HGfdasorwoFBncTdDXD-g27lMY8h0oVnIxHHSgLt4ok2LOybq_bijRh4fpfw_jfwAMfoXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812734295</pqid></control><display><type>article</type><title>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Zhidong ; Xie, Zhibin ; Li, Weibang ; Aziz, Hafiz Sartaj ; Abbas, Muhammad ; Zheng, Zhuanghao ; Su, Zhenghua ; Fan, Ping ; Chen, Shuo ; Liang, Guangxing</creator><creatorcontrib>Li, Zhidong ; Xie, Zhibin ; Li, Weibang ; Aziz, Hafiz Sartaj ; Abbas, Muhammad ; Zheng, Zhuanghao ; Su, Zhenghua ; Fan, Ping ; Chen, Shuo ; Liang, Guangxing</creatorcontrib><description>Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16093414</identifier><identifier>PMID: 37176295</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annealing ; Bismuth oxides ; Charge transport ; Current efficiency ; Density ; Electrodes ; Electrolytes ; Glass substrates ; Grain size ; Hydrogen ; Hydrogen evolution ; Kinetics ; Oxidation ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Quantum dots ; Scanning electron microscopy ; Spectrum analysis ; Vanadates ; Water splitting</subject><ispartof>Materials, 2023-04, Vol.16 (9), p.3414</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</citedby><cites>FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</cites><orcidid>0000-0002-9033-4885 ; 0000-0003-1512-376X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812734295/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812734295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Li, Zhidong</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Li, Weibang</creatorcontrib><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Zheng, Zhuanghao</creatorcontrib><creatorcontrib>Su, Zhenghua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Liang, Guangxing</creatorcontrib><title>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</title><title>Materials</title><description>Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.</description><subject>Annealing</subject><subject>Bismuth oxides</subject><subject>Charge transport</subject><subject>Current efficiency</subject><subject>Density</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Kinetics</subject><subject>Oxidation</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Quantum dots</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU9rGzEQxUVJqI3jSz-BoJcQcKJ_q12dSmLcJBBwoU56FLNayZbZlRxpHZpv3zUxbZq5zMD8eLw3g9AXSi45V-SqAyqJ4oKKT2hMlZIzqoQ4eTeP0DTnLRmKc1ox9RmNeElLyVQxRqv5BtLa4lWCkHcx9XgRNhCM7WzosQ_4xj8tBf6xiX2EEBuLXUx44Zw3_kD8jC0k_At6m_Dyt2-g9zGcoVMHbbbTY5-gx--L1fxu9rC8vZ9fP8wMr0Q_M6IRElzjbF0pyXlhCNQgi8LAEE02gtZFWTPHaG1lxYktnWNMUF7KUohK8Qn69qa729edbcxgKEGrd8l3kF51BK__3wS_0ev4oimhFRGsGBTOjwopPu9t7nXns7FtC8HGfdasorwoFBncTdDXD-g27lMY8h0oVnIxHHSgLt4ok2LOybq_bijRh4fpfw_jfwAMfoXk</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Li, Zhidong</creator><creator>Xie, Zhibin</creator><creator>Li, Weibang</creator><creator>Aziz, Hafiz Sartaj</creator><creator>Abbas, Muhammad</creator><creator>Zheng, Zhuanghao</creator><creator>Su, Zhenghua</creator><creator>Fan, Ping</creator><creator>Chen, Shuo</creator><creator>Liang, Guangxing</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid></search><sort><creationdate>20230427</creationdate><title>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</title><author>Li, Zhidong ; Xie, Zhibin ; Li, Weibang ; Aziz, Hafiz Sartaj ; Abbas, Muhammad ; Zheng, Zhuanghao ; Su, Zhenghua ; Fan, Ping ; Chen, Shuo ; Liang, Guangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Bismuth oxides</topic><topic>Charge transport</topic><topic>Current efficiency</topic><topic>Density</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Kinetics</topic><topic>Oxidation</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Quantum dots</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhidong</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Li, Weibang</creatorcontrib><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Zheng, Zhuanghao</creatorcontrib><creatorcontrib>Su, Zhenghua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Liang, Guangxing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhidong</au><au>Xie, Zhibin</au><au>Li, Weibang</au><au>Aziz, Hafiz Sartaj</au><au>Abbas, Muhammad</au><au>Zheng, Zhuanghao</au><au>Su, Zhenghua</au><au>Fan, Ping</au><au>Chen, Shuo</au><au>Liang, Guangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</atitle><jtitle>Materials</jtitle><date>2023-04-27</date><risdate>2023</risdate><volume>16</volume><issue>9</issue><spage>3414</spage><pages>3414-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37176295</pmid><doi>10.3390/ma16093414</doi><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-04, Vol.16 (9), p.3414
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180425
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Annealing
Bismuth oxides
Charge transport
Current efficiency
Density
Electrodes
Electrolytes
Glass substrates
Grain size
Hydrogen
Hydrogen evolution
Kinetics
Oxidation
Photoanodes
Photoelectric effect
Photoelectric emission
Quantum dots
Scanning electron microscopy
Spectrum analysis
Vanadates
Water splitting
title Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Transport%20Enhancement%20in%20BiVO4%20Photoanode%20for%20Efficient%20Solar%20Water%20Oxidation&rft.jtitle=Materials&rft.au=Li,%20Zhidong&rft.date=2023-04-27&rft.volume=16&rft.issue=9&rft.spage=3414&rft.pages=3414-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16093414&rft_dat=%3Cproquest_pubme%3E2812734295%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812734295&rft_id=info:pmid/37176295&rfr_iscdi=true