Loading…
Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation
Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can...
Saved in:
Published in: | Materials 2023-04, Vol.16 (9), p.3414 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893 |
container_end_page | |
container_issue | 9 |
container_start_page | 3414 |
container_title | Materials |
container_volume | 16 |
creator | Li, Zhidong Xie, Zhibin Li, Weibang Aziz, Hafiz Sartaj Abbas, Muhammad Zheng, Zhuanghao Su, Zhenghua Fan, Ping Chen, Shuo Liang, Guangxing |
description | Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting. |
doi_str_mv | 10.3390/ma16093414 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812734295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxUVJqI3jSz-BoJcQcKJ_q12dSmLcJBBwoU56FLNayZbZlRxpHZpv3zUxbZq5zMD8eLw3g9AXSi45V-SqAyqJ4oKKT2hMlZIzqoQ4eTeP0DTnLRmKc1ox9RmNeElLyVQxRqv5BtLa4lWCkHcx9XgRNhCM7WzosQ_4xj8tBf6xiX2EEBuLXUx44Zw3_kD8jC0k_At6m_Dyt2-g9zGcoVMHbbbTY5-gx--L1fxu9rC8vZ9fP8wMr0Q_M6IRElzjbF0pyXlhCNQgi8LAEE02gtZFWTPHaG1lxYktnWNMUF7KUohK8Qn69qa729edbcxgKEGrd8l3kF51BK__3wS_0ev4oimhFRGsGBTOjwopPu9t7nXns7FtC8HGfdasorwoFBncTdDXD-g27lMY8h0oVnIxHHSgLt4ok2LOybq_bijRh4fpfw_jfwAMfoXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812734295</pqid></control><display><type>article</type><title>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Zhidong ; Xie, Zhibin ; Li, Weibang ; Aziz, Hafiz Sartaj ; Abbas, Muhammad ; Zheng, Zhuanghao ; Su, Zhenghua ; Fan, Ping ; Chen, Shuo ; Liang, Guangxing</creator><creatorcontrib>Li, Zhidong ; Xie, Zhibin ; Li, Weibang ; Aziz, Hafiz Sartaj ; Abbas, Muhammad ; Zheng, Zhuanghao ; Su, Zhenghua ; Fan, Ping ; Chen, Shuo ; Liang, Guangxing</creatorcontrib><description>Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16093414</identifier><identifier>PMID: 37176295</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annealing ; Bismuth oxides ; Charge transport ; Current efficiency ; Density ; Electrodes ; Electrolytes ; Glass substrates ; Grain size ; Hydrogen ; Hydrogen evolution ; Kinetics ; Oxidation ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Quantum dots ; Scanning electron microscopy ; Spectrum analysis ; Vanadates ; Water splitting</subject><ispartof>Materials, 2023-04, Vol.16 (9), p.3414</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</citedby><cites>FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</cites><orcidid>0000-0002-9033-4885 ; 0000-0003-1512-376X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812734295/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812734295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Li, Zhidong</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Li, Weibang</creatorcontrib><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Zheng, Zhuanghao</creatorcontrib><creatorcontrib>Su, Zhenghua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Liang, Guangxing</creatorcontrib><title>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</title><title>Materials</title><description>Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.</description><subject>Annealing</subject><subject>Bismuth oxides</subject><subject>Charge transport</subject><subject>Current efficiency</subject><subject>Density</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Kinetics</subject><subject>Oxidation</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Quantum dots</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU9rGzEQxUVJqI3jSz-BoJcQcKJ_q12dSmLcJBBwoU56FLNayZbZlRxpHZpv3zUxbZq5zMD8eLw3g9AXSi45V-SqAyqJ4oKKT2hMlZIzqoQ4eTeP0DTnLRmKc1ox9RmNeElLyVQxRqv5BtLa4lWCkHcx9XgRNhCM7WzosQ_4xj8tBf6xiX2EEBuLXUx44Zw3_kD8jC0k_At6m_Dyt2-g9zGcoVMHbbbTY5-gx--L1fxu9rC8vZ9fP8wMr0Q_M6IRElzjbF0pyXlhCNQgi8LAEE02gtZFWTPHaG1lxYktnWNMUF7KUohK8Qn69qa729edbcxgKEGrd8l3kF51BK__3wS_0ev4oimhFRGsGBTOjwopPu9t7nXns7FtC8HGfdasorwoFBncTdDXD-g27lMY8h0oVnIxHHSgLt4ok2LOybq_bijRh4fpfw_jfwAMfoXk</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Li, Zhidong</creator><creator>Xie, Zhibin</creator><creator>Li, Weibang</creator><creator>Aziz, Hafiz Sartaj</creator><creator>Abbas, Muhammad</creator><creator>Zheng, Zhuanghao</creator><creator>Su, Zhenghua</creator><creator>Fan, Ping</creator><creator>Chen, Shuo</creator><creator>Liang, Guangxing</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid></search><sort><creationdate>20230427</creationdate><title>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</title><author>Li, Zhidong ; Xie, Zhibin ; Li, Weibang ; Aziz, Hafiz Sartaj ; Abbas, Muhammad ; Zheng, Zhuanghao ; Su, Zhenghua ; Fan, Ping ; Chen, Shuo ; Liang, Guangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Bismuth oxides</topic><topic>Charge transport</topic><topic>Current efficiency</topic><topic>Density</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Kinetics</topic><topic>Oxidation</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Quantum dots</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhidong</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Li, Weibang</creatorcontrib><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Zheng, Zhuanghao</creatorcontrib><creatorcontrib>Su, Zhenghua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Liang, Guangxing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhidong</au><au>Xie, Zhibin</au><au>Li, Weibang</au><au>Aziz, Hafiz Sartaj</au><au>Abbas, Muhammad</au><au>Zheng, Zhuanghao</au><au>Su, Zhenghua</au><au>Fan, Ping</au><au>Chen, Shuo</au><au>Liang, Guangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation</atitle><jtitle>Materials</jtitle><date>2023-04-27</date><risdate>2023</risdate><volume>16</volume><issue>9</issue><spage>3414</spage><pages>3414-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37176295</pmid><doi>10.3390/ma16093414</doi><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-04, Vol.16 (9), p.3414 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180425 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Annealing Bismuth oxides Charge transport Current efficiency Density Electrodes Electrolytes Glass substrates Grain size Hydrogen Hydrogen evolution Kinetics Oxidation Photoanodes Photoelectric effect Photoelectric emission Quantum dots Scanning electron microscopy Spectrum analysis Vanadates Water splitting |
title | Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Transport%20Enhancement%20in%20BiVO4%20Photoanode%20for%20Efficient%20Solar%20Water%20Oxidation&rft.jtitle=Materials&rft.au=Li,%20Zhidong&rft.date=2023-04-27&rft.volume=16&rft.issue=9&rft.spage=3414&rft.pages=3414-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16093414&rft_dat=%3Cproquest_pubme%3E2812734295%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c4d46afdfeb896335c0aba655ca3396d41b57b2f21be6830e7ff2241376744893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812734295&rft_id=info:pmid/37176295&rfr_iscdi=true |