Loading…
Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance
Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and v...
Saved in:
Published in: | European radiology 2023-06, Vol.33 (6), p.3792-3800 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-a3dc0815736a5f36fadf2540b7695fbd5748eb06d147d6e71f4e410de59ef2453 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-a3dc0815736a5f36fadf2540b7695fbd5748eb06d147d6e71f4e410de59ef2453 |
container_end_page | 3800 |
container_issue | 6 |
container_start_page | 3792 |
container_title | European radiology |
container_volume | 33 |
creator | Sushentsev, Nikita Rundo, Leonardo Abrego, Luis Li, Zonglun Nazarenko, Tatiana Warren, Anne Y. Gnanapragasam, Vincent J. Sala, Evis Zaikin, Alexey Barrett, Tristan Blyuss, Oleg |
description | Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78–0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64–0.87];
p
= 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76–0.93];
p
= 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation.
Key Points
•
LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density.
•
Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework.
•The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research. |
doi_str_mv | 10.1007/s00330-023-09438-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10182165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774268171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-a3dc0815736a5f36fadf2540b7695fbd5748eb06d147d6e71f4e410de59ef2453</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eol_8AQ7IEhcugfFH7OSEUAUFqRKXcra89njr1SZe7GTV_nucblsKh57s0Tzzel6_hLxl8JEB6E8FQAhogIsGeim65uYFOWZS8IZBJ18-uR-Rk1I2ANAzqV-TI6G07IWGY7K5igPSgjliodn6mIboCg0p0-ka6S6jj26KaaQp1CqVyU5InR0d5qVeZyxlaceR7uwUcZwKraWtQ_sqPOc9xu124c_Iq2C3Bd_cn6fk17evV-ffm8ufFz_Ov1w2Tup2aqzwDjrWaqFsG4QK1gfeSlhp1bdh5VstO1yB8tWKV6hZkCgZeGx7DFy24pR8Puju5tWA3tWVst2aXY6Dzbcm2Wj-7Yzx2qzT3jBgHWdqUfhwr5DT7xnLZIZYHC42MM3FcK0lVx3TrKLv_0M3ac5j9Wd4x3in64-rSvED5eoPlozhcRsGZsnSHLI0NUtzl6W5qUPvnvp4HHkIrwLiAJTaGteY_779jOwfjRqs8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812879146</pqid></control><display><type>article</type><title>Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance</title><source>Springer Nature</source><creator>Sushentsev, Nikita ; Rundo, Leonardo ; Abrego, Luis ; Li, Zonglun ; Nazarenko, Tatiana ; Warren, Anne Y. ; Gnanapragasam, Vincent J. ; Sala, Evis ; Zaikin, Alexey ; Barrett, Tristan ; Blyuss, Oleg</creator><creatorcontrib>Sushentsev, Nikita ; Rundo, Leonardo ; Abrego, Luis ; Li, Zonglun ; Nazarenko, Tatiana ; Warren, Anne Y. ; Gnanapragasam, Vincent J. ; Sala, Evis ; Zaikin, Alexey ; Barrett, Tristan ; Blyuss, Oleg</creatorcontrib><description>Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78–0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64–0.87];
p
= 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76–0.93];
p
= 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation.
Key Points
•
LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density.
•
Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework.
•The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-023-09438-x</identifier><identifier>PMID: 36749370</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Decision analysis ; Decision making ; Density ; Diagnostic Radiology ; Humans ; Image analysis ; Image processing ; Imaging ; Internal Medicine ; Interventional Radiology ; Long short-term memory ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medicine ; Medicine & Public Health ; Neural networks ; Neuroradiology ; Patients ; Performance prediction ; Prediction models ; Prostate - pathology ; Prostate cancer ; Prostate-Specific Antigen ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - pathology ; Radiology ; Radiomics ; Recurrent neural networks ; Retrospective Studies ; Surveillance ; Time Factors ; Time series ; Tumors ; Ultrasound ; Urogenital ; Watchful Waiting</subject><ispartof>European radiology, 2023-06, Vol.33 (6), p.3792-3800</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-a3dc0815736a5f36fadf2540b7695fbd5748eb06d147d6e71f4e410de59ef2453</citedby><cites>FETCH-LOGICAL-c475t-a3dc0815736a5f36fadf2540b7695fbd5748eb06d147d6e71f4e410de59ef2453</cites><orcidid>0000-0003-4500-9714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36749370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sushentsev, Nikita</creatorcontrib><creatorcontrib>Rundo, Leonardo</creatorcontrib><creatorcontrib>Abrego, Luis</creatorcontrib><creatorcontrib>Li, Zonglun</creatorcontrib><creatorcontrib>Nazarenko, Tatiana</creatorcontrib><creatorcontrib>Warren, Anne Y.</creatorcontrib><creatorcontrib>Gnanapragasam, Vincent J.</creatorcontrib><creatorcontrib>Sala, Evis</creatorcontrib><creatorcontrib>Zaikin, Alexey</creatorcontrib><creatorcontrib>Barrett, Tristan</creatorcontrib><creatorcontrib>Blyuss, Oleg</creatorcontrib><title>Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78–0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64–0.87];
p
= 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76–0.93];
p
= 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation.
Key Points
•
LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density.
•
Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework.
•The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.</description><subject>Decision analysis</subject><subject>Decision making</subject><subject>Density</subject><subject>Diagnostic Radiology</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Long short-term memory</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Neuroradiology</subject><subject>Patients</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Prostate - pathology</subject><subject>Prostate cancer</subject><subject>Prostate-Specific Antigen</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Recurrent neural networks</subject><subject>Retrospective Studies</subject><subject>Surveillance</subject><subject>Time Factors</subject><subject>Time series</subject><subject>Tumors</subject><subject>Ultrasound</subject><subject>Urogenital</subject><subject>Watchful Waiting</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eol_8AQ7IEhcugfFH7OSEUAUFqRKXcra89njr1SZe7GTV_nucblsKh57s0Tzzel6_hLxl8JEB6E8FQAhogIsGeim65uYFOWZS8IZBJ18-uR-Rk1I2ANAzqV-TI6G07IWGY7K5igPSgjliodn6mIboCg0p0-ka6S6jj26KaaQp1CqVyU5InR0d5qVeZyxlaceR7uwUcZwKraWtQ_sqPOc9xu124c_Iq2C3Bd_cn6fk17evV-ffm8ufFz_Ov1w2Tup2aqzwDjrWaqFsG4QK1gfeSlhp1bdh5VstO1yB8tWKV6hZkCgZeGx7DFy24pR8Puju5tWA3tWVst2aXY6Dzbcm2Wj-7Yzx2qzT3jBgHWdqUfhwr5DT7xnLZIZYHC42MM3FcK0lVx3TrKLv_0M3ac5j9Wd4x3in64-rSvED5eoPlozhcRsGZsnSHLI0NUtzl6W5qUPvnvp4HHkIrwLiAJTaGteY_779jOwfjRqs8Q</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sushentsev, Nikita</creator><creator>Rundo, Leonardo</creator><creator>Abrego, Luis</creator><creator>Li, Zonglun</creator><creator>Nazarenko, Tatiana</creator><creator>Warren, Anne Y.</creator><creator>Gnanapragasam, Vincent J.</creator><creator>Sala, Evis</creator><creator>Zaikin, Alexey</creator><creator>Barrett, Tristan</creator><creator>Blyuss, Oleg</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4500-9714</orcidid></search><sort><creationdate>20230601</creationdate><title>Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance</title><author>Sushentsev, Nikita ; Rundo, Leonardo ; Abrego, Luis ; Li, Zonglun ; Nazarenko, Tatiana ; Warren, Anne Y. ; Gnanapragasam, Vincent J. ; Sala, Evis ; Zaikin, Alexey ; Barrett, Tristan ; Blyuss, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-a3dc0815736a5f36fadf2540b7695fbd5748eb06d147d6e71f4e410de59ef2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decision analysis</topic><topic>Decision making</topic><topic>Density</topic><topic>Diagnostic Radiology</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Long short-term memory</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Neuroradiology</topic><topic>Patients</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Prostate - pathology</topic><topic>Prostate cancer</topic><topic>Prostate-Specific Antigen</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Recurrent neural networks</topic><topic>Retrospective Studies</topic><topic>Surveillance</topic><topic>Time Factors</topic><topic>Time series</topic><topic>Tumors</topic><topic>Ultrasound</topic><topic>Urogenital</topic><topic>Watchful Waiting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sushentsev, Nikita</creatorcontrib><creatorcontrib>Rundo, Leonardo</creatorcontrib><creatorcontrib>Abrego, Luis</creatorcontrib><creatorcontrib>Li, Zonglun</creatorcontrib><creatorcontrib>Nazarenko, Tatiana</creatorcontrib><creatorcontrib>Warren, Anne Y.</creatorcontrib><creatorcontrib>Gnanapragasam, Vincent J.</creatorcontrib><creatorcontrib>Sala, Evis</creatorcontrib><creatorcontrib>Zaikin, Alexey</creatorcontrib><creatorcontrib>Barrett, Tristan</creatorcontrib><creatorcontrib>Blyuss, Oleg</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sushentsev, Nikita</au><au>Rundo, Leonardo</au><au>Abrego, Luis</au><au>Li, Zonglun</au><au>Nazarenko, Tatiana</au><au>Warren, Anne Y.</au><au>Gnanapragasam, Vincent J.</au><au>Sala, Evis</au><au>Zaikin, Alexey</au><au>Barrett, Tristan</au><au>Blyuss, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><spage>3792</spage><epage>3800</epage><pages>3792-3800</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78–0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64–0.87];
p
= 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76–0.93];
p
= 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation.
Key Points
•
LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density.
•
Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework.
•The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36749370</pmid><doi>10.1007/s00330-023-09438-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4500-9714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-1084 |
ispartof | European radiology, 2023-06, Vol.33 (6), p.3792-3800 |
issn | 1432-1084 0938-7994 1432-1084 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10182165 |
source | Springer Nature |
subjects | Decision analysis Decision making Density Diagnostic Radiology Humans Image analysis Image processing Imaging Internal Medicine Interventional Radiology Long short-term memory Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medicine Medicine & Public Health Neural networks Neuroradiology Patients Performance prediction Prediction models Prostate - pathology Prostate cancer Prostate-Specific Antigen Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - pathology Radiology Radiomics Recurrent neural networks Retrospective Studies Surveillance Time Factors Time series Tumors Ultrasound Urogenital Watchful Waiting |
title | Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20series%20radiomics%20for%20the%20prediction%20of%20prostate%20cancer%20progression%20in%20patients%20on%20active%20surveillance&rft.jtitle=European%20radiology&rft.au=Sushentsev,%20Nikita&rft.date=2023-06-01&rft.volume=33&rft.issue=6&rft.spage=3792&rft.epage=3800&rft.pages=3792-3800&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-023-09438-x&rft_dat=%3Cproquest_pubme%3E2774268171%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-a3dc0815736a5f36fadf2540b7695fbd5748eb06d147d6e71f4e410de59ef2453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812879146&rft_id=info:pmid/36749370&rfr_iscdi=true |