Loading…

Track: Inferred counting and tracking of replicating DNA loci

Fluorescent microscopy is the primary method to study DNA organization within cells. However, the variability and low signal/noise commonly associated with live-cell time-lapse imaging challenges quantitative measurements. In particular, obtaining quantitative or mechanistic insight often depends on...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2023-05, Vol.122 (9), p.1577-1585
Main Authors: Köhler, Robin, Sadhir, Ismath, Murray, Seán M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluorescent microscopy is the primary method to study DNA organization within cells. However, the variability and low signal/noise commonly associated with live-cell time-lapse imaging challenges quantitative measurements. In particular, obtaining quantitative or mechanistic insight often depends on the accurate tracking of fluorescent particles. Here, we present ★Track, an inference method that determines the most likely temporal tracking of replicating intracellular particles such DNA loci while accounting for missing, merged, and spurious detections. It allows the accurate prediction of particle copy numbers as well as the timing of replication events. We demonstrate ★Track’s abilities and gain new insight into plasmid copy number control and the volume dependence of bacterial chromosome replication initiation. By enabling the accurate tracking of DNA loci, ★Track can help to uncover the mechanistic principles of chromosome organization and dynamics across a range of systems.
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2023.03.033