Loading…

Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net

Pathological conditions associated with the optic nerve (ON) can cause structural changes in the nerve. Quantifying these changes could provide further understanding of disease mechanisms. We aim to develop a framework that automatically segments the ON separately from its surrounding cerebrospinal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical imaging (Bellingham, Wash.) Wash.), 2023-05, Vol.10 (3), p.034501-034501
Main Authors: van Elst, Sabien, de Bloeme, Christiaan M., Noteboom, Samantha, de Jong, Marcus C., Moll, Annette C., Göricke, Sophia, de Graaf, Pim, Caan, Matthan W. A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-df303519621abdd3f636dc5885cee8f0a3287fbadfeb5ff6a4e565a417fca5b83
cites
container_end_page 034501
container_issue 3
container_start_page 034501
container_title Journal of medical imaging (Bellingham, Wash.)
container_volume 10
creator van Elst, Sabien
de Bloeme, Christiaan M.
Noteboom, Samantha
de Jong, Marcus C.
Moll, Annette C.
Göricke, Sophia
de Graaf, Pim
Caan, Matthan W. A.
description Pathological conditions associated with the optic nerve (ON) can cause structural changes in the nerve. Quantifying these changes could provide further understanding of disease mechanisms. We aim to develop a framework that automatically segments the ON separately from its surrounding cerebrospinal fluid (CSF) on magnetic resonance imaging (MRI) and quantifies the diameter and cross-sectional area along the entire length of the nerve. Multicenter data were obtained from retinoblastoma referral centers, providing a heterogeneous dataset of 40 high-resolution 3D T2-weighted MRI scans with manual ground truth delineations of both ONs. A 3D U-Net was used for ON segmentation, and performance was assessed in a tenfold cross-validation ( ) and on a separate test-set ( ) by measuring spatial, volumetric, and distance agreement with manual ground truths. Segmentations were used to quantify diameter and cross-sectional area along the length of the ON, using centerline extraction of tubular 3D surface models. Absolute agreement between automated and manual measurements was assessed by the intraclass correlation coefficient (ICC). The segmentation network achieved high performance, with a mean Dice similarity coefficient score of 0.84, median Hausdorff distance of 0.64 mm, and ICC of 0.95 on the test-set. The quantification method obtained acceptable correspondence to manual reference measurements with mean ICC values of 0.76 for the diameter and 0.71 for the cross-sectional area. Compared with other methods, our method precisely identifies the ON from surrounding CSF and accurately estimates its diameter along the nerve's centerline. Our automated framework provides an objective method for ON assessment .
doi_str_mv 10.1117/1.JMI.10.3.034501
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10185127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815249802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-df303519621abdd3f636dc5885cee8f0a3287fbadfeb5ff6a4e565a417fca5b83</originalsourceid><addsrcrecordid>eNp9kUtPxCAUhYnROEb9AW4MSzetXCh9rIwZX2N8JMZZE0phxExhprQm_nuZVCe6ccW58N3DzT0InQBJAaA4h_T-cZbGiqWEZZzADjqgjFZJxoDsbjWhE3QcwjshBIBwCtk-mrACqoIV2QF6vRx638reKhz0otWuj9o7LF2D14N0vTVWjVfe4P5NY7_awE53H1E7_Pgyw0OwboElZld4njzp_gjtGbkM-vj7PETzm-vX6V3y8Hw7m14-JCpjVZ80hhHGocopyLppmMlZ3ihellxpXRoiGS0LU8vG6Jobk8tM85zLDAqjJK9LdoguRt_VULe6UXH6Ti7FqrOt7D6Fl1b8fXH2TSz8hwACJQdaRIezb4fOrwcdetHaoPRyKZ32QxC0BE6zqiQ0ojCiqvMhdNps_wEiNokIEDGRTcXEmEjsOf094LbjZ_8RSEcgrKwW737oXFzYP45ft6KVyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815249802</pqid></control><display><type>article</type><title>Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net</title><source>PubMed Central (PMC)</source><creator>van Elst, Sabien ; de Bloeme, Christiaan M. ; Noteboom, Samantha ; de Jong, Marcus C. ; Moll, Annette C. ; Göricke, Sophia ; de Graaf, Pim ; Caan, Matthan W. A.</creator><creatorcontrib>van Elst, Sabien ; de Bloeme, Christiaan M. ; Noteboom, Samantha ; de Jong, Marcus C. ; Moll, Annette C. ; Göricke, Sophia ; de Graaf, Pim ; Caan, Matthan W. A.</creatorcontrib><description>Pathological conditions associated with the optic nerve (ON) can cause structural changes in the nerve. Quantifying these changes could provide further understanding of disease mechanisms. We aim to develop a framework that automatically segments the ON separately from its surrounding cerebrospinal fluid (CSF) on magnetic resonance imaging (MRI) and quantifies the diameter and cross-sectional area along the entire length of the nerve. Multicenter data were obtained from retinoblastoma referral centers, providing a heterogeneous dataset of 40 high-resolution 3D T2-weighted MRI scans with manual ground truth delineations of both ONs. A 3D U-Net was used for ON segmentation, and performance was assessed in a tenfold cross-validation ( ) and on a separate test-set ( ) by measuring spatial, volumetric, and distance agreement with manual ground truths. Segmentations were used to quantify diameter and cross-sectional area along the length of the ON, using centerline extraction of tubular 3D surface models. Absolute agreement between automated and manual measurements was assessed by the intraclass correlation coefficient (ICC). The segmentation network achieved high performance, with a mean Dice similarity coefficient score of 0.84, median Hausdorff distance of 0.64 mm, and ICC of 0.95 on the test-set. The quantification method obtained acceptable correspondence to manual reference measurements with mean ICC values of 0.76 for the diameter and 0.71 for the cross-sectional area. Compared with other methods, our method precisely identifies the ON from surrounding CSF and accurately estimates its diameter along the nerve's centerline. Our automated framework provides an objective method for ON assessment .</description><identifier>ISSN: 2329-4302</identifier><identifier>EISSN: 2329-4310</identifier><identifier>DOI: 10.1117/1.JMI.10.3.034501</identifier><identifier>PMID: 37197374</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Computer-Aided Diagnosis</subject><ispartof>Journal of medical imaging (Bellingham, Wash.), 2023-05, Vol.10 (3), p.034501-034501</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-df303519621abdd3f636dc5885cee8f0a3287fbadfeb5ff6a4e565a417fca5b83</citedby><orcidid>0000-0002-5162-8880 ; 0000-0003-2784-1988 ; 0000-0002-8524-5108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185127/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185127/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37197374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Elst, Sabien</creatorcontrib><creatorcontrib>de Bloeme, Christiaan M.</creatorcontrib><creatorcontrib>Noteboom, Samantha</creatorcontrib><creatorcontrib>de Jong, Marcus C.</creatorcontrib><creatorcontrib>Moll, Annette C.</creatorcontrib><creatorcontrib>Göricke, Sophia</creatorcontrib><creatorcontrib>de Graaf, Pim</creatorcontrib><creatorcontrib>Caan, Matthan W. A.</creatorcontrib><title>Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net</title><title>Journal of medical imaging (Bellingham, Wash.)</title><addtitle>J. Med. Imag</addtitle><description>Pathological conditions associated with the optic nerve (ON) can cause structural changes in the nerve. Quantifying these changes could provide further understanding of disease mechanisms. We aim to develop a framework that automatically segments the ON separately from its surrounding cerebrospinal fluid (CSF) on magnetic resonance imaging (MRI) and quantifies the diameter and cross-sectional area along the entire length of the nerve. Multicenter data were obtained from retinoblastoma referral centers, providing a heterogeneous dataset of 40 high-resolution 3D T2-weighted MRI scans with manual ground truth delineations of both ONs. A 3D U-Net was used for ON segmentation, and performance was assessed in a tenfold cross-validation ( ) and on a separate test-set ( ) by measuring spatial, volumetric, and distance agreement with manual ground truths. Segmentations were used to quantify diameter and cross-sectional area along the length of the ON, using centerline extraction of tubular 3D surface models. Absolute agreement between automated and manual measurements was assessed by the intraclass correlation coefficient (ICC). The segmentation network achieved high performance, with a mean Dice similarity coefficient score of 0.84, median Hausdorff distance of 0.64 mm, and ICC of 0.95 on the test-set. The quantification method obtained acceptable correspondence to manual reference measurements with mean ICC values of 0.76 for the diameter and 0.71 for the cross-sectional area. Compared with other methods, our method precisely identifies the ON from surrounding CSF and accurately estimates its diameter along the nerve's centerline. Our automated framework provides an objective method for ON assessment .</description><subject>Computer-Aided Diagnosis</subject><issn>2329-4302</issn><issn>2329-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPxCAUhYnROEb9AW4MSzetXCh9rIwZX2N8JMZZE0phxExhprQm_nuZVCe6ccW58N3DzT0InQBJAaA4h_T-cZbGiqWEZZzADjqgjFZJxoDsbjWhE3QcwjshBIBwCtk-mrACqoIV2QF6vRx638reKhz0otWuj9o7LF2D14N0vTVWjVfe4P5NY7_awE53H1E7_Pgyw0OwboElZld4njzp_gjtGbkM-vj7PETzm-vX6V3y8Hw7m14-JCpjVZ80hhHGocopyLppmMlZ3ihellxpXRoiGS0LU8vG6Jobk8tM85zLDAqjJK9LdoguRt_VULe6UXH6Ti7FqrOt7D6Fl1b8fXH2TSz8hwACJQdaRIezb4fOrwcdetHaoPRyKZ32QxC0BE6zqiQ0ojCiqvMhdNps_wEiNokIEDGRTcXEmEjsOf094LbjZ_8RSEcgrKwW737oXFzYP45ft6KVyQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>van Elst, Sabien</creator><creator>de Bloeme, Christiaan M.</creator><creator>Noteboom, Samantha</creator><creator>de Jong, Marcus C.</creator><creator>Moll, Annette C.</creator><creator>Göricke, Sophia</creator><creator>de Graaf, Pim</creator><creator>Caan, Matthan W. A.</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5162-8880</orcidid><orcidid>https://orcid.org/0000-0003-2784-1988</orcidid><orcidid>https://orcid.org/0000-0002-8524-5108</orcidid></search><sort><creationdate>20230501</creationdate><title>Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net</title><author>van Elst, Sabien ; de Bloeme, Christiaan M. ; Noteboom, Samantha ; de Jong, Marcus C. ; Moll, Annette C. ; Göricke, Sophia ; de Graaf, Pim ; Caan, Matthan W. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-df303519621abdd3f636dc5885cee8f0a3287fbadfeb5ff6a4e565a417fca5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer-Aided Diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Elst, Sabien</creatorcontrib><creatorcontrib>de Bloeme, Christiaan M.</creatorcontrib><creatorcontrib>Noteboom, Samantha</creatorcontrib><creatorcontrib>de Jong, Marcus C.</creatorcontrib><creatorcontrib>Moll, Annette C.</creatorcontrib><creatorcontrib>Göricke, Sophia</creatorcontrib><creatorcontrib>de Graaf, Pim</creatorcontrib><creatorcontrib>Caan, Matthan W. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Elst, Sabien</au><au>de Bloeme, Christiaan M.</au><au>Noteboom, Samantha</au><au>de Jong, Marcus C.</au><au>Moll, Annette C.</au><au>Göricke, Sophia</au><au>de Graaf, Pim</au><au>Caan, Matthan W. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net</atitle><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle><addtitle>J. Med. Imag</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>034501</spage><epage>034501</epage><pages>034501-034501</pages><issn>2329-4302</issn><eissn>2329-4310</eissn><abstract>Pathological conditions associated with the optic nerve (ON) can cause structural changes in the nerve. Quantifying these changes could provide further understanding of disease mechanisms. We aim to develop a framework that automatically segments the ON separately from its surrounding cerebrospinal fluid (CSF) on magnetic resonance imaging (MRI) and quantifies the diameter and cross-sectional area along the entire length of the nerve. Multicenter data were obtained from retinoblastoma referral centers, providing a heterogeneous dataset of 40 high-resolution 3D T2-weighted MRI scans with manual ground truth delineations of both ONs. A 3D U-Net was used for ON segmentation, and performance was assessed in a tenfold cross-validation ( ) and on a separate test-set ( ) by measuring spatial, volumetric, and distance agreement with manual ground truths. Segmentations were used to quantify diameter and cross-sectional area along the length of the ON, using centerline extraction of tubular 3D surface models. Absolute agreement between automated and manual measurements was assessed by the intraclass correlation coefficient (ICC). The segmentation network achieved high performance, with a mean Dice similarity coefficient score of 0.84, median Hausdorff distance of 0.64 mm, and ICC of 0.95 on the test-set. The quantification method obtained acceptable correspondence to manual reference measurements with mean ICC values of 0.76 for the diameter and 0.71 for the cross-sectional area. Compared with other methods, our method precisely identifies the ON from surrounding CSF and accurately estimates its diameter along the nerve's centerline. Our automated framework provides an objective method for ON assessment .</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>37197374</pmid><doi>10.1117/1.JMI.10.3.034501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5162-8880</orcidid><orcidid>https://orcid.org/0000-0003-2784-1988</orcidid><orcidid>https://orcid.org/0000-0002-8524-5108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-4302
ispartof Journal of medical imaging (Bellingham, Wash.), 2023-05, Vol.10 (3), p.034501-034501
issn 2329-4302
2329-4310
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10185127
source PubMed Central (PMC)
subjects Computer-Aided Diagnosis
title Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20and%20quantification%20of%20the%20optic%20nerve%20on%20MRI%20using%20a%203D%20U-Net&rft.jtitle=Journal%20of%20medical%20imaging%20(Bellingham,%20Wash.)&rft.au=van%20Elst,%20Sabien&rft.date=2023-05-01&rft.volume=10&rft.issue=3&rft.spage=034501&rft.epage=034501&rft.pages=034501-034501&rft.issn=2329-4302&rft.eissn=2329-4310&rft_id=info:doi/10.1117/1.JMI.10.3.034501&rft_dat=%3Cproquest_pubme%3E2815249802%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-df303519621abdd3f636dc5885cee8f0a3287fbadfeb5ff6a4e565a417fca5b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815249802&rft_id=info:pmid/37197374&rfr_iscdi=true