Loading…
Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health
Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate...
Saved in:
Published in: | Safety science 2022-02, Vol.146, p.105569-105581, Article 105569 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3 |
container_end_page | 105581 |
container_issue | |
container_start_page | 105569 |
container_title | Safety science |
container_volume | 146 |
creator | Ezerins, Maira E. Ludwig, Timothy D. O'Neil, Tara Foreman, Anne M. Açıkgöz, Yalçın |
description | Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents. |
doi_str_mv | 10.1016/j.ssci.2021.105569 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10191184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925753521004112</els_id><sourcerecordid>2629086343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EoqHwB1ggS2zYTPBr7DFCqqKKAlIlNrC2bmxP4jBjB3uSKP8eh7TlsWBl-Z5zP_veg9BLSuaUUPl2My_FhjkjjNZC20r9CM1op3RDiWCP0Yxo1jaq5e0FelbKhhBCuaRP0QVXjAit6QwdFm4P0Ya4wgV6Px0xRBiOU7DlHV5gF2AVU6lX3GcY_SHl77hPGUMpvpRfbccy-RFnDy7EWsOHMK1DxMna3RamkCrvN9vhtYdhWj9HT3oYin9xd16ibzcfvl5_am6_fPx8vbhtrOjE1DjCuGbQd53lSkmlvW6p0JT0vZPLKjm3JLKljAnPLddQxSU4UEr0Qijgl-jqzN3ulqN31scpw2C2OYyQjyZBMH8rMazNKu1N3bCmtBOV8OaOkNOPnS-TGUOxfhgg-rQrhnVUKimIOFlf_2PdpF2u81eXZJp0kgteXezssjmVkn3_8BtKTs9KszGnYM0pWHMOtja9-nOOh5b7JKvh_dng6zb3wWdTET5a70L2djIuhf_xfwKp8La2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629086343</pqid></control><display><type>article</type><title>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Ezerins, Maira E. ; Ludwig, Timothy D. ; O'Neil, Tara ; Foreman, Anne M. ; Açıkgöz, Yalçın</creator><creatorcontrib>Ezerins, Maira E. ; Ludwig, Timothy D. ; O'Neil, Tara ; Foreman, Anne M. ; Açıkgöz, Yalçın</creatorcontrib><description>Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.</description><identifier>ISSN: 0925-7535</identifier><identifier>EISSN: 1879-1042</identifier><identifier>DOI: 10.1016/j.ssci.2021.105569</identifier><identifier>PMID: 37204991</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Big Data ; Data acquisition ; Data analysis ; Data analytics ; Data collection ; Decision analysis ; Injury analysis ; Mathematical analysis ; Medical diagnosis ; Missing data ; Nomenclature ; Norms ; Occupational health ; Occupational safety ; Readiness assessment ; Safety analytics ; Safety management</subject><ispartof>Safety science, 2022-02, Vol.146, p.105569-105581, Article 105569</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</citedby><cites>FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</cites><orcidid>0000-0002-7596-8417 ; 0000-0001-9043-4539 ; 0000-0002-5905-6346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37204991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ezerins, Maira E.</creatorcontrib><creatorcontrib>Ludwig, Timothy D.</creatorcontrib><creatorcontrib>O'Neil, Tara</creatorcontrib><creatorcontrib>Foreman, Anne M.</creatorcontrib><creatorcontrib>Açıkgöz, Yalçın</creatorcontrib><title>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</title><title>Safety science</title><addtitle>Saf Sci</addtitle><description>Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.</description><subject>Big Data</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Data analytics</subject><subject>Data collection</subject><subject>Decision analysis</subject><subject>Injury analysis</subject><subject>Mathematical analysis</subject><subject>Medical diagnosis</subject><subject>Missing data</subject><subject>Nomenclature</subject><subject>Norms</subject><subject>Occupational health</subject><subject>Occupational safety</subject><subject>Readiness assessment</subject><subject>Safety analytics</subject><subject>Safety management</subject><issn>0925-7535</issn><issn>1879-1042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtvEzEUhS0EoqHwB1ggS2zYTPBr7DFCqqKKAlIlNrC2bmxP4jBjB3uSKP8eh7TlsWBl-Z5zP_veg9BLSuaUUPl2My_FhjkjjNZC20r9CM1op3RDiWCP0Yxo1jaq5e0FelbKhhBCuaRP0QVXjAit6QwdFm4P0Ya4wgV6Px0xRBiOU7DlHV5gF2AVU6lX3GcY_SHl77hPGUMpvpRfbccy-RFnDy7EWsOHMK1DxMna3RamkCrvN9vhtYdhWj9HT3oYin9xd16ibzcfvl5_am6_fPx8vbhtrOjE1DjCuGbQd53lSkmlvW6p0JT0vZPLKjm3JLKljAnPLddQxSU4UEr0Qijgl-jqzN3ulqN31scpw2C2OYyQjyZBMH8rMazNKu1N3bCmtBOV8OaOkNOPnS-TGUOxfhgg-rQrhnVUKimIOFlf_2PdpF2u81eXZJp0kgteXezssjmVkn3_8BtKTs9KszGnYM0pWHMOtja9-nOOh5b7JKvh_dng6zb3wWdTET5a70L2djIuhf_xfwKp8La2</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Ezerins, Maira E.</creator><creator>Ludwig, Timothy D.</creator><creator>O'Neil, Tara</creator><creator>Foreman, Anne M.</creator><creator>Açıkgöz, Yalçın</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7596-8417</orcidid><orcidid>https://orcid.org/0000-0001-9043-4539</orcidid><orcidid>https://orcid.org/0000-0002-5905-6346</orcidid></search><sort><creationdate>202202</creationdate><title>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</title><author>Ezerins, Maira E. ; Ludwig, Timothy D. ; O'Neil, Tara ; Foreman, Anne M. ; Açıkgöz, Yalçın</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Data analytics</topic><topic>Data collection</topic><topic>Decision analysis</topic><topic>Injury analysis</topic><topic>Mathematical analysis</topic><topic>Medical diagnosis</topic><topic>Missing data</topic><topic>Nomenclature</topic><topic>Norms</topic><topic>Occupational health</topic><topic>Occupational safety</topic><topic>Readiness assessment</topic><topic>Safety analytics</topic><topic>Safety management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezerins, Maira E.</creatorcontrib><creatorcontrib>Ludwig, Timothy D.</creatorcontrib><creatorcontrib>O'Neil, Tara</creatorcontrib><creatorcontrib>Foreman, Anne M.</creatorcontrib><creatorcontrib>Açıkgöz, Yalçın</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Safety science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezerins, Maira E.</au><au>Ludwig, Timothy D.</au><au>O'Neil, Tara</au><au>Foreman, Anne M.</au><au>Açıkgöz, Yalçın</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</atitle><jtitle>Safety science</jtitle><addtitle>Saf Sci</addtitle><date>2022-02</date><risdate>2022</risdate><volume>146</volume><spage>105569</spage><epage>105581</epage><pages>105569-105581</pages><artnum>105569</artnum><issn>0925-7535</issn><eissn>1879-1042</eissn><abstract>Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37204991</pmid><doi>10.1016/j.ssci.2021.105569</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7596-8417</orcidid><orcidid>https://orcid.org/0000-0001-9043-4539</orcidid><orcidid>https://orcid.org/0000-0002-5905-6346</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-7535 |
ispartof | Safety science, 2022-02, Vol.146, p.105569-105581, Article 105569 |
issn | 0925-7535 1879-1042 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10191184 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Big Data Data acquisition Data analysis Data analytics Data collection Decision analysis Injury analysis Mathematical analysis Medical diagnosis Missing data Nomenclature Norms Occupational health Occupational safety Readiness assessment Safety analytics Safety management |
title | Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20safety%20analytics:%20A%20diagnostic%20framework%20for%20assessing%20system%20readiness%20within%20occupational%20safety%20and%20health&rft.jtitle=Safety%20science&rft.au=Ezerins,%20Maira%20E.&rft.date=2022-02&rft.volume=146&rft.spage=105569&rft.epage=105581&rft.pages=105569-105581&rft.artnum=105569&rft.issn=0925-7535&rft.eissn=1879-1042&rft_id=info:doi/10.1016/j.ssci.2021.105569&rft_dat=%3Cproquest_pubme%3E2629086343%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629086343&rft_id=info:pmid/37204991&rfr_iscdi=true |