Loading…

Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health

Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate...

Full description

Saved in:
Bibliographic Details
Published in:Safety science 2022-02, Vol.146, p.105569-105581, Article 105569
Main Authors: Ezerins, Maira E., Ludwig, Timothy D., O'Neil, Tara, Foreman, Anne M., Açıkgöz, Yalçın
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3
cites cdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3
container_end_page 105581
container_issue
container_start_page 105569
container_title Safety science
container_volume 146
creator Ezerins, Maira E.
Ludwig, Timothy D.
O'Neil, Tara
Foreman, Anne M.
Açıkgöz, Yalçın
description Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.
doi_str_mv 10.1016/j.ssci.2021.105569
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10191184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925753521004112</els_id><sourcerecordid>2629086343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EoqHwB1ggS2zYTPBr7DFCqqKKAlIlNrC2bmxP4jBjB3uSKP8eh7TlsWBl-Z5zP_veg9BLSuaUUPl2My_FhjkjjNZC20r9CM1op3RDiWCP0Yxo1jaq5e0FelbKhhBCuaRP0QVXjAit6QwdFm4P0Ya4wgV6Px0xRBiOU7DlHV5gF2AVU6lX3GcY_SHl77hPGUMpvpRfbccy-RFnDy7EWsOHMK1DxMna3RamkCrvN9vhtYdhWj9HT3oYin9xd16ibzcfvl5_am6_fPx8vbhtrOjE1DjCuGbQd53lSkmlvW6p0JT0vZPLKjm3JLKljAnPLddQxSU4UEr0Qijgl-jqzN3ulqN31scpw2C2OYyQjyZBMH8rMazNKu1N3bCmtBOV8OaOkNOPnS-TGUOxfhgg-rQrhnVUKimIOFlf_2PdpF2u81eXZJp0kgteXezssjmVkn3_8BtKTs9KszGnYM0pWHMOtja9-nOOh5b7JKvh_dng6zb3wWdTET5a70L2djIuhf_xfwKp8La2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629086343</pqid></control><display><type>article</type><title>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Ezerins, Maira E. ; Ludwig, Timothy D. ; O'Neil, Tara ; Foreman, Anne M. ; Açıkgöz, Yalçın</creator><creatorcontrib>Ezerins, Maira E. ; Ludwig, Timothy D. ; O'Neil, Tara ; Foreman, Anne M. ; Açıkgöz, Yalçın</creatorcontrib><description>Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.</description><identifier>ISSN: 0925-7535</identifier><identifier>EISSN: 1879-1042</identifier><identifier>DOI: 10.1016/j.ssci.2021.105569</identifier><identifier>PMID: 37204991</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Big Data ; Data acquisition ; Data analysis ; Data analytics ; Data collection ; Decision analysis ; Injury analysis ; Mathematical analysis ; Medical diagnosis ; Missing data ; Nomenclature ; Norms ; Occupational health ; Occupational safety ; Readiness assessment ; Safety analytics ; Safety management</subject><ispartof>Safety science, 2022-02, Vol.146, p.105569-105581, Article 105569</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</citedby><cites>FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</cites><orcidid>0000-0002-7596-8417 ; 0000-0001-9043-4539 ; 0000-0002-5905-6346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37204991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ezerins, Maira E.</creatorcontrib><creatorcontrib>Ludwig, Timothy D.</creatorcontrib><creatorcontrib>O'Neil, Tara</creatorcontrib><creatorcontrib>Foreman, Anne M.</creatorcontrib><creatorcontrib>Açıkgöz, Yalçın</creatorcontrib><title>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</title><title>Safety science</title><addtitle>Saf Sci</addtitle><description>Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.</description><subject>Big Data</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Data analytics</subject><subject>Data collection</subject><subject>Decision analysis</subject><subject>Injury analysis</subject><subject>Mathematical analysis</subject><subject>Medical diagnosis</subject><subject>Missing data</subject><subject>Nomenclature</subject><subject>Norms</subject><subject>Occupational health</subject><subject>Occupational safety</subject><subject>Readiness assessment</subject><subject>Safety analytics</subject><subject>Safety management</subject><issn>0925-7535</issn><issn>1879-1042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtvEzEUhS0EoqHwB1ggS2zYTPBr7DFCqqKKAlIlNrC2bmxP4jBjB3uSKP8eh7TlsWBl-Z5zP_veg9BLSuaUUPl2My_FhjkjjNZC20r9CM1op3RDiWCP0Yxo1jaq5e0FelbKhhBCuaRP0QVXjAit6QwdFm4P0Ya4wgV6Px0xRBiOU7DlHV5gF2AVU6lX3GcY_SHl77hPGUMpvpRfbccy-RFnDy7EWsOHMK1DxMna3RamkCrvN9vhtYdhWj9HT3oYin9xd16ibzcfvl5_am6_fPx8vbhtrOjE1DjCuGbQd53lSkmlvW6p0JT0vZPLKjm3JLKljAnPLddQxSU4UEr0Qijgl-jqzN3ulqN31scpw2C2OYyQjyZBMH8rMazNKu1N3bCmtBOV8OaOkNOPnS-TGUOxfhgg-rQrhnVUKimIOFlf_2PdpF2u81eXZJp0kgteXezssjmVkn3_8BtKTs9KszGnYM0pWHMOtja9-nOOh5b7JKvh_dng6zb3wWdTET5a70L2djIuhf_xfwKp8La2</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Ezerins, Maira E.</creator><creator>Ludwig, Timothy D.</creator><creator>O'Neil, Tara</creator><creator>Foreman, Anne M.</creator><creator>Açıkgöz, Yalçın</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7596-8417</orcidid><orcidid>https://orcid.org/0000-0001-9043-4539</orcidid><orcidid>https://orcid.org/0000-0002-5905-6346</orcidid></search><sort><creationdate>202202</creationdate><title>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</title><author>Ezerins, Maira E. ; Ludwig, Timothy D. ; O'Neil, Tara ; Foreman, Anne M. ; Açıkgöz, Yalçın</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Data analytics</topic><topic>Data collection</topic><topic>Decision analysis</topic><topic>Injury analysis</topic><topic>Mathematical analysis</topic><topic>Medical diagnosis</topic><topic>Missing data</topic><topic>Nomenclature</topic><topic>Norms</topic><topic>Occupational health</topic><topic>Occupational safety</topic><topic>Readiness assessment</topic><topic>Safety analytics</topic><topic>Safety management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezerins, Maira E.</creatorcontrib><creatorcontrib>Ludwig, Timothy D.</creatorcontrib><creatorcontrib>O'Neil, Tara</creatorcontrib><creatorcontrib>Foreman, Anne M.</creatorcontrib><creatorcontrib>Açıkgöz, Yalçın</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Safety science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezerins, Maira E.</au><au>Ludwig, Timothy D.</au><au>O'Neil, Tara</au><au>Foreman, Anne M.</au><au>Açıkgöz, Yalçın</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health</atitle><jtitle>Safety science</jtitle><addtitle>Saf Sci</addtitle><date>2022-02</date><risdate>2022</risdate><volume>146</volume><spage>105569</spage><epage>105581</epage><pages>105569-105581</pages><artnum>105569</artnum><issn>0925-7535</issn><eissn>1879-1042</eissn><abstract>Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37204991</pmid><doi>10.1016/j.ssci.2021.105569</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7596-8417</orcidid><orcidid>https://orcid.org/0000-0001-9043-4539</orcidid><orcidid>https://orcid.org/0000-0002-5905-6346</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-7535
ispartof Safety science, 2022-02, Vol.146, p.105569-105581, Article 105569
issn 0925-7535
1879-1042
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10191184
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Big Data
Data acquisition
Data analysis
Data analytics
Data collection
Decision analysis
Injury analysis
Mathematical analysis
Medical diagnosis
Missing data
Nomenclature
Norms
Occupational health
Occupational safety
Readiness assessment
Safety analytics
Safety management
title Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20safety%20analytics:%20A%20diagnostic%20framework%20for%20assessing%20system%20readiness%20within%20occupational%20safety%20and%20health&rft.jtitle=Safety%20science&rft.au=Ezerins,%20Maira%20E.&rft.date=2022-02&rft.volume=146&rft.spage=105569&rft.epage=105581&rft.pages=105569-105581&rft.artnum=105569&rft.issn=0925-7535&rft.eissn=1879-1042&rft_id=info:doi/10.1016/j.ssci.2021.105569&rft_dat=%3Cproquest_pubme%3E2629086343%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-d02392af88c377679e9514910ffd6b392ddb0651224e3c39a149bada774f447a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629086343&rft_id=info:pmid/37204991&rfr_iscdi=true