Loading…

Temperature changes in the root ecosystem affect plant functionality

Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does...

Full description

Saved in:
Bibliographic Details
Published in:Plant communications 2023-05, Vol.4 (3), p.100514, Article 100514
Main Authors: González-García, Mary Paz, Conesa, Carlos M., Lozano-Enguita, Alberto, Baca-González, Victoria, Simancas, Bárbara, Navarro-Neila, Sara, Sánchez-Bermúdez, María, Salas-González, Isai, Caro, Elena, Castrillo, Gabriel, del Pozo, Juan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-f2cba9540c72ba3b4896f31adab6649a53b008a5ef9c906507a4195836926fb13
cites cdi_FETCH-LOGICAL-c456t-f2cba9540c72ba3b4896f31adab6649a53b008a5ef9c906507a4195836926fb13
container_end_page
container_issue 3
container_start_page 100514
container_title Plant communications
container_volume 4
creator González-García, Mary Paz
Conesa, Carlos M.
Lozano-Enguita, Alberto
Baca-González, Victoria
Simancas, Bárbara
Navarro-Neila, Sara
Sánchez-Bermúdez, María
Salas-González, Isai
Caro, Elena
Castrillo, Gabriel
del Pozo, Juan C.
description Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field. Climate change and heat are limiting factors for plant growth and productivity. This study provides new insight into plant heat response using an innovative device that generates a temperature gradient in the root system, simulating natural soil conditions.
doi_str_mv 10.1016/j.xplc.2022.100514
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10203444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590346222003613</els_id><sourcerecordid>36585788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-f2cba9540c72ba3b4896f31adab6649a53b008a5ef9c906507a4195836926fb13</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMottS-gBeyL7A15-6CIFKPUPCmXodsdtKm7IkkLfbt3bIq9carGWb-_x_mQ-ia4BnBRN5uZ59dZWYUU9oPsCD8DI2pyHHKuKTnJ_0ITUPYYoypIEQycYlGTIpMzLNsjB5XUHfgddx5SMxGN2sIiWuSuIHEt21MwLThECLUibYWTEy6SjcxsbvGRNc2unLxcIUurK4CTL_rBH08P60Wr-ny_eVt8bBMDRcyppaaQueCYzOnhWYFz3JpGdGlLqTkuRaswDjTAmxuciwFnmtOcpExmVNpC8Im6H7I7XZFDaWBJnpdqc67WvuDarVTfzeN26h1u1cEU8w4530CHRKMb0PwYH_NBKsjV7VVR67qyFUNXHvTzenZX8sPxV5wNwigf37vwKtgHDQGSud7ZKps3X_5X8hLiqs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature changes in the root ecosystem affect plant functionality</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>González-García, Mary Paz ; Conesa, Carlos M. ; Lozano-Enguita, Alberto ; Baca-González, Victoria ; Simancas, Bárbara ; Navarro-Neila, Sara ; Sánchez-Bermúdez, María ; Salas-González, Isai ; Caro, Elena ; Castrillo, Gabriel ; del Pozo, Juan C.</creator><creatorcontrib>González-García, Mary Paz ; Conesa, Carlos M. ; Lozano-Enguita, Alberto ; Baca-González, Victoria ; Simancas, Bárbara ; Navarro-Neila, Sara ; Sánchez-Bermúdez, María ; Salas-González, Isai ; Caro, Elena ; Castrillo, Gabriel ; del Pozo, Juan C.</creatorcontrib><description>Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field. Climate change and heat are limiting factors for plant growth and productivity. This study provides new insight into plant heat response using an innovative device that generates a temperature gradient in the root system, simulating natural soil conditions.</description><identifier>ISSN: 2590-3462</identifier><identifier>EISSN: 2590-3462</identifier><identifier>DOI: 10.1016/j.xplc.2022.100514</identifier><identifier>PMID: 36585788</identifier><language>eng</language><publisher>China: Elsevier Inc</publisher><subject>Ecosystem ; gene expression ; heat stress ; Hot Temperature ; Meristem ; microbiome ; nutrition ; Plant Roots - metabolism ; Plants ; root ; Temperature ; temperature gradient</subject><ispartof>Plant communications, 2023-05, Vol.4 (3), p.100514, Article 100514</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-f2cba9540c72ba3b4896f31adab6649a53b008a5ef9c906507a4195836926fb13</citedby><cites>FETCH-LOGICAL-c456t-f2cba9540c72ba3b4896f31adab6649a53b008a5ef9c906507a4195836926fb13</cites><orcidid>0000-0002-4113-457X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203444/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590346222003613$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36585788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-García, Mary Paz</creatorcontrib><creatorcontrib>Conesa, Carlos M.</creatorcontrib><creatorcontrib>Lozano-Enguita, Alberto</creatorcontrib><creatorcontrib>Baca-González, Victoria</creatorcontrib><creatorcontrib>Simancas, Bárbara</creatorcontrib><creatorcontrib>Navarro-Neila, Sara</creatorcontrib><creatorcontrib>Sánchez-Bermúdez, María</creatorcontrib><creatorcontrib>Salas-González, Isai</creatorcontrib><creatorcontrib>Caro, Elena</creatorcontrib><creatorcontrib>Castrillo, Gabriel</creatorcontrib><creatorcontrib>del Pozo, Juan C.</creatorcontrib><title>Temperature changes in the root ecosystem affect plant functionality</title><title>Plant communications</title><addtitle>Plant Commun</addtitle><description>Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field. Climate change and heat are limiting factors for plant growth and productivity. This study provides new insight into plant heat response using an innovative device that generates a temperature gradient in the root system, simulating natural soil conditions.</description><subject>Ecosystem</subject><subject>gene expression</subject><subject>heat stress</subject><subject>Hot Temperature</subject><subject>Meristem</subject><subject>microbiome</subject><subject>nutrition</subject><subject>Plant Roots - metabolism</subject><subject>Plants</subject><subject>root</subject><subject>Temperature</subject><subject>temperature gradient</subject><issn>2590-3462</issn><issn>2590-3462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMottS-gBeyL7A15-6CIFKPUPCmXodsdtKm7IkkLfbt3bIq9carGWb-_x_mQ-ia4BnBRN5uZ59dZWYUU9oPsCD8DI2pyHHKuKTnJ_0ITUPYYoypIEQycYlGTIpMzLNsjB5XUHfgddx5SMxGN2sIiWuSuIHEt21MwLThECLUibYWTEy6SjcxsbvGRNc2unLxcIUurK4CTL_rBH08P60Wr-ny_eVt8bBMDRcyppaaQueCYzOnhWYFz3JpGdGlLqTkuRaswDjTAmxuciwFnmtOcpExmVNpC8Im6H7I7XZFDaWBJnpdqc67WvuDarVTfzeN26h1u1cEU8w4530CHRKMb0PwYH_NBKsjV7VVR67qyFUNXHvTzenZX8sPxV5wNwigf37vwKtgHDQGSud7ZKps3X_5X8hLiqs</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>González-García, Mary Paz</creator><creator>Conesa, Carlos M.</creator><creator>Lozano-Enguita, Alberto</creator><creator>Baca-González, Victoria</creator><creator>Simancas, Bárbara</creator><creator>Navarro-Neila, Sara</creator><creator>Sánchez-Bermúdez, María</creator><creator>Salas-González, Isai</creator><creator>Caro, Elena</creator><creator>Castrillo, Gabriel</creator><creator>del Pozo, Juan C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4113-457X</orcidid></search><sort><creationdate>20230508</creationdate><title>Temperature changes in the root ecosystem affect plant functionality</title><author>González-García, Mary Paz ; Conesa, Carlos M. ; Lozano-Enguita, Alberto ; Baca-González, Victoria ; Simancas, Bárbara ; Navarro-Neila, Sara ; Sánchez-Bermúdez, María ; Salas-González, Isai ; Caro, Elena ; Castrillo, Gabriel ; del Pozo, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-f2cba9540c72ba3b4896f31adab6649a53b008a5ef9c906507a4195836926fb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ecosystem</topic><topic>gene expression</topic><topic>heat stress</topic><topic>Hot Temperature</topic><topic>Meristem</topic><topic>microbiome</topic><topic>nutrition</topic><topic>Plant Roots - metabolism</topic><topic>Plants</topic><topic>root</topic><topic>Temperature</topic><topic>temperature gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-García, Mary Paz</creatorcontrib><creatorcontrib>Conesa, Carlos M.</creatorcontrib><creatorcontrib>Lozano-Enguita, Alberto</creatorcontrib><creatorcontrib>Baca-González, Victoria</creatorcontrib><creatorcontrib>Simancas, Bárbara</creatorcontrib><creatorcontrib>Navarro-Neila, Sara</creatorcontrib><creatorcontrib>Sánchez-Bermúdez, María</creatorcontrib><creatorcontrib>Salas-González, Isai</creatorcontrib><creatorcontrib>Caro, Elena</creatorcontrib><creatorcontrib>Castrillo, Gabriel</creatorcontrib><creatorcontrib>del Pozo, Juan C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-García, Mary Paz</au><au>Conesa, Carlos M.</au><au>Lozano-Enguita, Alberto</au><au>Baca-González, Victoria</au><au>Simancas, Bárbara</au><au>Navarro-Neila, Sara</au><au>Sánchez-Bermúdez, María</au><au>Salas-González, Isai</au><au>Caro, Elena</au><au>Castrillo, Gabriel</au><au>del Pozo, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature changes in the root ecosystem affect plant functionality</atitle><jtitle>Plant communications</jtitle><addtitle>Plant Commun</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>100514</spage><pages>100514-</pages><artnum>100514</artnum><issn>2590-3462</issn><eissn>2590-3462</eissn><abstract>Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field. Climate change and heat are limiting factors for plant growth and productivity. This study provides new insight into plant heat response using an innovative device that generates a temperature gradient in the root system, simulating natural soil conditions.</abstract><cop>China</cop><pub>Elsevier Inc</pub><pmid>36585788</pmid><doi>10.1016/j.xplc.2022.100514</doi><orcidid>https://orcid.org/0000-0002-4113-457X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-3462
ispartof Plant communications, 2023-05, Vol.4 (3), p.100514, Article 100514
issn 2590-3462
2590-3462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10203444
source ScienceDirect®; PubMed Central
subjects Ecosystem
gene expression
heat stress
Hot Temperature
Meristem
microbiome
nutrition
Plant Roots - metabolism
Plants
root
Temperature
temperature gradient
title Temperature changes in the root ecosystem affect plant functionality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20changes%20in%20the%20root%20ecosystem%20affect%20plant%20functionality&rft.jtitle=Plant%20communications&rft.au=Gonz%C3%A1lez-Garc%C3%ADa,%20Mary%20Paz&rft.date=2023-05-08&rft.volume=4&rft.issue=3&rft.spage=100514&rft.pages=100514-&rft.artnum=100514&rft.issn=2590-3462&rft.eissn=2590-3462&rft_id=info:doi/10.1016/j.xplc.2022.100514&rft_dat=%3Cpubmed_cross%3E36585788%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-f2cba9540c72ba3b4896f31adab6649a53b008a5ef9c906507a4195836926fb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/36585788&rfr_iscdi=true