Loading…

Optical Simulation-Aided Design and Engineering of Monolithic Perovskite/Silicon Tandem Solar Cells

Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highlights light manageme...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2023-05, Vol.6 (10), p.5217-5229
Main Authors: Zhao, Yifeng, Datta, Kunal, Phung, Nga, Bracesco, Andrea E. A., Zardetto, Valerio, Paggiaro, Giulia, Liu, Hanchen, Fardousi, Mohua, Santbergen, Rudi, Moya, Paul Procel, Han, Can, Yang, Guangtao, Wang, Junke, Zhang, Dong, van Gorkom, Bas T., van der Pol, Tom P. A., Verhage, Michael, Wienk, Martijn M., Kessels, Wilhelmus M. M., Weeber, Arthur, Zeman, Miro, Mazzarella, Luana, Creatore, Mariadriana, Janssen, René A. J., Isabella, Olindo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highlights light management techniques assisted by optical simulation. We first engineered (i)­a-Si:H passivating layers for (100)-oriented flat c-Si surfaces and combined them with various (n)­a-Si:H, (n)­nc-Si:H, and (n)­nc-SiO x :H interfacial layers for SHJ bottom-cells. In a symmetrical configuration, a long minority carrier lifetime of 16.9 ms was achieved when combining (i)­a-Si:H bilayers with (n)­nc-Si:H (extracted at the minority carrier density of 1015 cm–3). The perovskite sub-cell uses a photostable mixed-halide composition and surface passivation strategies to minimize energetic losses at charge-transport interfaces. This allows tandem efficiencies above 23% (a maximum of 24.6%) to be achieved using all three types of (n)-layers. Observations from experimentally prepared devices and optical simulations indicate that both (n)­nc-SiO x :H and (n)­nc-Si:H are promising for use in high-efficiency tandem solar cells. This is possible due to minimized reflection at the interfaces between the perovskite and SHJ sub-cells by optimized interference effects, demonstrating the applicability of such light management techniques to various tandem structures.
ISSN:2574-0962
2574-0962
DOI:10.1021/acsaem.3c00136