Loading…

Proteomics with Enhanced In-Source Fragmentation/Annotation: Applying XCMS-EISA Informatics and Q‑MRM High-Sensitivity Quantification

Enhanced in-source fragmentation/annotation (EISA) has recently been shown to produce fragment ions that match tandem mass spectrometry data across a wide range of small molecules. EISA has been developed to facilitate data-dependent acquisition (DDA), data-independent acquisiton (DIA), and multiple...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2021-11, Vol.32 (11), p.2644-2654
Main Authors: Xue, Jingchuan, Derks, Rico J. E, Hoang, Linh, Giera, Martin, Siuzdak, Gary
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enhanced in-source fragmentation/annotation (EISA) has recently been shown to produce fragment ions that match tandem mass spectrometry data across a wide range of small molecules. EISA has been developed to facilitate data-dependent acquisition (DDA), data-independent acquisiton (DIA), and multiple-reaction monitoring (MRM), enabling molecular identifications in untargeted metabolomics and targeted quantitative single-quadrupole MRM (Q-MRM) analyses. Here, EISA has been applied to peptide-based proteomic analysis using optimized in-source fragmentation to generate fragmentation patterns for a mixture of 38 peptides, which were comparable to the b- and y-type fragment ions typically observed in tandem MS experiments. The optimal in-source fragmentation conditions at which high-abundance peptide fragments and precursor ions coexist were compared with automated data-dependent acquisition (DDA) in the same quadrupole time-of-flight (QTOF–MS) mass spectrometer, generating a significantly higher fragment percentage of peptides from both singly and doubly charged b- and y-type fragment (b+, y+, b2+, and y2+) ions. Higher fragment percentages were also observed for these fragment ion series over linear ion trap instrumentation. An XCMS-EISA annotation/deconvolution program was developed, making use of the retention time and peak shape continuity between precursor fragment ions, to perform automated proteomic data analysis on the enhanced in-source fragments. Post-translational modification (PTM) characterization on peptides was demonstrated with EISA, producing fragment ions corresponding to a neutral loss of phosphoric acid with greater intensity than observed with DDA on a QTOF–MS. Moreover, Q-MRM demonstrated the ability to use EISA for peptide quantification. The availability of more sophisticated in-source fragmentation informatics, beyond XCMS-EISA, will further enable EISA for sensitive autonomous identification and Q-MRM quantitative analyses in proteomics.
ISSN:1044-0305
1879-1123
DOI:10.1021/jasms.1c00188