Loading…
Biocomposite Cryogels for Photothermal Decontamination of Water
An effective and sustainable approach to deal with the scarcity of freshwater is interfacial solar-driven evaporation. Nonetheless, some serious challenges for photothermal materials still need to be considered, such as long-term stability in harsh environments, eco-friendly materials, and cost-effe...
Saved in:
Published in: | Langmuir 2023-06, Vol.39 (22), p.7793-7803 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An effective and sustainable approach to deal with the scarcity of freshwater is interfacial solar-driven evaporation. Nonetheless, some serious challenges for photothermal materials still need to be considered, such as long-term stability in harsh environments, eco-friendly materials, and cost-effective and simple fabrication processes. Keeping these points in mind, we present a multifunctional silver-coated vegetable waste biocomposite cryogel that not only exhibits high porosity and enhanced wettability and stability but also possesses high light absorption and low thermal conductivity favorable for heat localization, solar steam generation, and efficient photothermal conversion efficiency. The achieved solar evaporation rate is 1.17 kg m–2 h–1 with a solar-to-vapor conversion efficiency of 81.11% under 1 Sun irradiation. The developed material is able to effectively desalinate artificial seawater and decontaminate synthetic wastewater (e.g., water containing dye molecules and mercury ions) with an efficiency of >99%. Most importantly, the composite cryogel presents antifouling properties, and in particular, salt antifouling ability and anti-biofouling properties. Thus, the numerous functionalities of the biocomposite cryogel make it a cost-effective promising device for prolonged water decontamination processes. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c00623 |