Loading…
Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging
White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of stream...
Saved in:
Published in: | Anatomical science international 2023-07, Vol.98 (3), p.318-336 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13 |
container_end_page | 336 |
container_issue | 3 |
container_start_page | 318 |
container_title | Anatomical science international |
container_volume | 98 |
creator | Andica, Christina Kamagata, Koji Aoki, Shigeki |
description | White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg. |
doi_str_mv | 10.1007/s12565-023-00715-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10256641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824337679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1U1JbSP8ABWeqFS8Afib0-VVXFl1SJC0jcLK8zyXqV2MV2ivj3zLJLoT1UPnjseeb1eF5CXnH2ljOm3xUuOtU1TMgGj7xrzDNyyttWN0zL70eHWJnOnJAXpWwZ46bj8picSM24NkyckvlqqWl2FXpaNxmg6cMMsYQU3URnt02Z_tyEChjXCpmul9hPQAuMiFVXEaRLCXGkfRiGZVeI6BihBk8zFNSJHmjAO4RekueDmwqcH_Yz8u3D-6_Xn5qbLx8_X1_dNF6xVW3MmmOfznNmvBp83zHQyrVedcK3g4Be-1Wr2xV3ihsjBwmOD1powZ1YY7E8I5d73dtlPUPvsdXsJnubsY_8yyYX7MNMDBs7pjvLGY5UtTuFNweFnH4sUKqdQ_EwTS5CWooV2iiOSypELx6h27RknB9SK9FKqZU2SIk95XMqJcNw3w1ndmen3dtp0U77x067K3r9_z_uS_76h4DcAwVTcYT87-0nZH8DXaqtww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824337679</pqid></control><display><type>article</type><title>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</title><source>Springer Nature</source><creator>Andica, Christina ; Kamagata, Koji ; Aoki, Shigeki</creator><creatorcontrib>Andica, Christina ; Kamagata, Koji ; Aoki, Shigeki</creatorcontrib><description>White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.</description><identifier>ISSN: 1447-6959</identifier><identifier>EISSN: 1447-073X</identifier><identifier>DOI: 10.1007/s12565-023-00715-9</identifier><identifier>PMID: 37017902</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Anatomy ; Animal Anatomy ; Animal Physiology ; Brain - diagnostic imaging ; Cell Biology ; Diffusion Magnetic Resonance Imaging ; Diffusion Tensor Imaging - methods ; Histology ; Human Physiology ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Medicine ; Medicine & Public Health ; Morphology ; Neuroimaging ; Neurosciences ; Reproducibility of Results ; Review ; Review Article ; Segmentation ; Substantia alba ; White Matter - anatomy & histology ; White Matter - diagnostic imaging</subject><ispartof>Anatomical science international, 2023-07, Vol.98 (3), p.318-336</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</citedby><cites>FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</cites><orcidid>0000-0002-9339-6950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37017902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><title>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</title><title>Anatomical science international</title><addtitle>Anat Sci Int</addtitle><addtitle>Anat Sci Int</addtitle><description>White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.</description><subject>Anatomy</subject><subject>Animal Anatomy</subject><subject>Animal Physiology</subject><subject>Brain - diagnostic imaging</subject><subject>Cell Biology</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Histology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Reproducibility of Results</subject><subject>Review</subject><subject>Review Article</subject><subject>Segmentation</subject><subject>Substantia alba</subject><subject>White Matter - anatomy & histology</subject><subject>White Matter - diagnostic imaging</subject><issn>1447-6959</issn><issn>1447-073X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi1U1JbSP8ABWeqFS8Afib0-VVXFl1SJC0jcLK8zyXqV2MV2ivj3zLJLoT1UPnjseeb1eF5CXnH2ljOm3xUuOtU1TMgGj7xrzDNyyttWN0zL70eHWJnOnJAXpWwZ46bj8picSM24NkyckvlqqWl2FXpaNxmg6cMMsYQU3URnt02Z_tyEChjXCpmul9hPQAuMiFVXEaRLCXGkfRiGZVeI6BihBk8zFNSJHmjAO4RekueDmwqcH_Yz8u3D-6_Xn5qbLx8_X1_dNF6xVW3MmmOfznNmvBp83zHQyrVedcK3g4Be-1Wr2xV3ihsjBwmOD1powZ1YY7E8I5d73dtlPUPvsdXsJnubsY_8yyYX7MNMDBs7pjvLGY5UtTuFNweFnH4sUKqdQ_EwTS5CWooV2iiOSypELx6h27RknB9SK9FKqZU2SIk95XMqJcNw3w1ndmen3dtp0U77x067K3r9_z_uS_76h4DcAwVTcYT87-0nZH8DXaqtww</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Andica, Christina</creator><creator>Kamagata, Koji</creator><creator>Aoki, Shigeki</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9339-6950</orcidid></search><sort><creationdate>20230701</creationdate><title>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</title><author>Andica, Christina ; Kamagata, Koji ; Aoki, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatomy</topic><topic>Animal Anatomy</topic><topic>Animal Physiology</topic><topic>Brain - diagnostic imaging</topic><topic>Cell Biology</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Histology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Reproducibility of Results</topic><topic>Review</topic><topic>Review Article</topic><topic>Segmentation</topic><topic>Substantia alba</topic><topic>White Matter - anatomy & histology</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Anatomical science international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andica, Christina</au><au>Kamagata, Koji</au><au>Aoki, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</atitle><jtitle>Anatomical science international</jtitle><stitle>Anat Sci Int</stitle><addtitle>Anat Sci Int</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>98</volume><issue>3</issue><spage>318</spage><epage>336</epage><pages>318-336</pages><issn>1447-6959</issn><eissn>1447-073X</eissn><abstract>White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37017902</pmid><doi>10.1007/s12565-023-00715-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9339-6950</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1447-6959 |
ispartof | Anatomical science international, 2023-07, Vol.98 (3), p.318-336 |
issn | 1447-6959 1447-073X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10256641 |
source | Springer Nature |
subjects | Anatomy Animal Anatomy Animal Physiology Brain - diagnostic imaging Cell Biology Diffusion Magnetic Resonance Imaging Diffusion Tensor Imaging - methods Histology Human Physiology Humans Image processing Image Processing, Computer-Assisted - methods Magnetic resonance imaging Medicine Medicine & Public Health Morphology Neuroimaging Neurosciences Reproducibility of Results Review Review Article Segmentation Substantia alba White Matter - anatomy & histology White Matter - diagnostic imaging |
title | Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20three-dimensional%20major%20white%20matter%20bundle%20segmentation%20using%20diffusion%20magnetic%20resonance%20imaging&rft.jtitle=Anatomical%20science%20international&rft.au=Andica,%20Christina&rft.date=2023-07-01&rft.volume=98&rft.issue=3&rft.spage=318&rft.epage=336&rft.pages=318-336&rft.issn=1447-6959&rft.eissn=1447-073X&rft_id=info:doi/10.1007/s12565-023-00715-9&rft_dat=%3Cproquest_pubme%3E2824337679%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824337679&rft_id=info:pmid/37017902&rfr_iscdi=true |