Loading…

Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging

White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of stream...

Full description

Saved in:
Bibliographic Details
Published in:Anatomical science international 2023-07, Vol.98 (3), p.318-336
Main Authors: Andica, Christina, Kamagata, Koji, Aoki, Shigeki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13
cites cdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13
container_end_page 336
container_issue 3
container_start_page 318
container_title Anatomical science international
container_volume 98
creator Andica, Christina
Kamagata, Koji
Aoki, Shigeki
description White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.
doi_str_mv 10.1007/s12565-023-00715-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10256641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824337679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1U1JbSP8ABWeqFS8Afib0-VVXFl1SJC0jcLK8zyXqV2MV2ivj3zLJLoT1UPnjseeb1eF5CXnH2ljOm3xUuOtU1TMgGj7xrzDNyyttWN0zL70eHWJnOnJAXpWwZ46bj8picSM24NkyckvlqqWl2FXpaNxmg6cMMsYQU3URnt02Z_tyEChjXCpmul9hPQAuMiFVXEaRLCXGkfRiGZVeI6BihBk8zFNSJHmjAO4RekueDmwqcH_Yz8u3D-6_Xn5qbLx8_X1_dNF6xVW3MmmOfznNmvBp83zHQyrVedcK3g4Be-1Wr2xV3ihsjBwmOD1powZ1YY7E8I5d73dtlPUPvsdXsJnubsY_8yyYX7MNMDBs7pjvLGY5UtTuFNweFnH4sUKqdQ_EwTS5CWooV2iiOSypELx6h27RknB9SK9FKqZU2SIk95XMqJcNw3w1ndmen3dtp0U77x067K3r9_z_uS_76h4DcAwVTcYT87-0nZH8DXaqtww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824337679</pqid></control><display><type>article</type><title>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</title><source>Springer Nature</source><creator>Andica, Christina ; Kamagata, Koji ; Aoki, Shigeki</creator><creatorcontrib>Andica, Christina ; Kamagata, Koji ; Aoki, Shigeki</creatorcontrib><description>White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.</description><identifier>ISSN: 1447-6959</identifier><identifier>EISSN: 1447-073X</identifier><identifier>DOI: 10.1007/s12565-023-00715-9</identifier><identifier>PMID: 37017902</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Anatomy ; Animal Anatomy ; Animal Physiology ; Brain - diagnostic imaging ; Cell Biology ; Diffusion Magnetic Resonance Imaging ; Diffusion Tensor Imaging - methods ; Histology ; Human Physiology ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Medicine ; Medicine &amp; Public Health ; Morphology ; Neuroimaging ; Neurosciences ; Reproducibility of Results ; Review ; Review Article ; Segmentation ; Substantia alba ; White Matter - anatomy &amp; histology ; White Matter - diagnostic imaging</subject><ispartof>Anatomical science international, 2023-07, Vol.98 (3), p.318-336</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</citedby><cites>FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</cites><orcidid>0000-0002-9339-6950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37017902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><title>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</title><title>Anatomical science international</title><addtitle>Anat Sci Int</addtitle><addtitle>Anat Sci Int</addtitle><description>White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.</description><subject>Anatomy</subject><subject>Animal Anatomy</subject><subject>Animal Physiology</subject><subject>Brain - diagnostic imaging</subject><subject>Cell Biology</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Histology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Reproducibility of Results</subject><subject>Review</subject><subject>Review Article</subject><subject>Segmentation</subject><subject>Substantia alba</subject><subject>White Matter - anatomy &amp; histology</subject><subject>White Matter - diagnostic imaging</subject><issn>1447-6959</issn><issn>1447-073X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi1U1JbSP8ABWeqFS8Afib0-VVXFl1SJC0jcLK8zyXqV2MV2ivj3zLJLoT1UPnjseeb1eF5CXnH2ljOm3xUuOtU1TMgGj7xrzDNyyttWN0zL70eHWJnOnJAXpWwZ46bj8picSM24NkyckvlqqWl2FXpaNxmg6cMMsYQU3URnt02Z_tyEChjXCpmul9hPQAuMiFVXEaRLCXGkfRiGZVeI6BihBk8zFNSJHmjAO4RekueDmwqcH_Yz8u3D-6_Xn5qbLx8_X1_dNF6xVW3MmmOfznNmvBp83zHQyrVedcK3g4Be-1Wr2xV3ihsjBwmOD1powZ1YY7E8I5d73dtlPUPvsdXsJnubsY_8yyYX7MNMDBs7pjvLGY5UtTuFNweFnH4sUKqdQ_EwTS5CWooV2iiOSypELx6h27RknB9SK9FKqZU2SIk95XMqJcNw3w1ndmen3dtp0U77x067K3r9_z_uS_76h4DcAwVTcYT87-0nZH8DXaqtww</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Andica, Christina</creator><creator>Kamagata, Koji</creator><creator>Aoki, Shigeki</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9339-6950</orcidid></search><sort><creationdate>20230701</creationdate><title>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</title><author>Andica, Christina ; Kamagata, Koji ; Aoki, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatomy</topic><topic>Animal Anatomy</topic><topic>Animal Physiology</topic><topic>Brain - diagnostic imaging</topic><topic>Cell Biology</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Histology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Reproducibility of Results</topic><topic>Review</topic><topic>Review Article</topic><topic>Segmentation</topic><topic>Substantia alba</topic><topic>White Matter - anatomy &amp; histology</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Anatomical science international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andica, Christina</au><au>Kamagata, Koji</au><au>Aoki, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging</atitle><jtitle>Anatomical science international</jtitle><stitle>Anat Sci Int</stitle><addtitle>Anat Sci Int</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>98</volume><issue>3</issue><spage>318</spage><epage>336</epage><pages>318-336</pages><issn>1447-6959</issn><eissn>1447-073X</eissn><abstract>White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37017902</pmid><doi>10.1007/s12565-023-00715-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9339-6950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1447-6959
ispartof Anatomical science international, 2023-07, Vol.98 (3), p.318-336
issn 1447-6959
1447-073X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10256641
source Springer Nature
subjects Anatomy
Animal Anatomy
Animal Physiology
Brain - diagnostic imaging
Cell Biology
Diffusion Magnetic Resonance Imaging
Diffusion Tensor Imaging - methods
Histology
Human Physiology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Medicine
Medicine & Public Health
Morphology
Neuroimaging
Neurosciences
Reproducibility of Results
Review
Review Article
Segmentation
Substantia alba
White Matter - anatomy & histology
White Matter - diagnostic imaging
title Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20three-dimensional%20major%20white%20matter%20bundle%20segmentation%20using%20diffusion%20magnetic%20resonance%20imaging&rft.jtitle=Anatomical%20science%20international&rft.au=Andica,%20Christina&rft.date=2023-07-01&rft.volume=98&rft.issue=3&rft.spage=318&rft.epage=336&rft.pages=318-336&rft.issn=1447-6959&rft.eissn=1447-073X&rft_id=info:doi/10.1007/s12565-023-00715-9&rft_dat=%3Cproquest_pubme%3E2824337679%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c608t-9b1513ac109c6fcd50e76a4c652c4f2ed7c847481a61993f3ea1f72721a2b9b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824337679&rft_id=info:pmid/37017902&rfr_iscdi=true