Loading…
Time series outlier removal and imputing methods based on Colombian weather stations data
The time data series of weather stations are a source of information for floods. The study of the previous wintertime series allows knowing the behavior of the variables and the result that will be applied to analysis and simulation models that feed variables such as flow and level of a study area....
Saved in:
Published in: | Environmental science and pollution research international 2023-06, Vol.30 (28), p.72319-72335 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The time data series of weather stations are a source of information for floods. The study of the previous wintertime series allows knowing the behavior of the variables and the result that will be applied to analysis and simulation models that feed variables such as flow and level of a study area. One of the most common problems is the acquisition and transmission of data from weather stations due to atypical values and lost data; this generates difficulties in the simulation process. Consequently, it is necessary to propose a numerical strategy to solve this problem. The data source for this study is a real database where these problems are presented with different variables of weather. This study is based on comparing three methods of time series analysis to evaluate a multivariable process offline. For the development of the study, we applied a method based on the discrete Fourier transform (DFT), and we contrasted it with methods such as the average and linear regression without uncertainty parameters to complete missing data. The proposed methodology entails statistical values, outlier detection, and the application of the DFT. The application of DFT allows the time series completion, based on its ability to manage various gap sizes and replace missing values. In sum, DFT led to low error percentages for all the time series (1% average). This percentage reflects what would have likely been the shape or pattern of the time series behavior in the absence of misleading outliers and missing data. |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-27176-x |