Loading…
High-throughput experimentation for discovery of biodegradable polyesters
The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new mater...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2023-06, Vol.120 (23), p.e2220021120 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3 |
container_end_page | |
container_issue | 23 |
container_start_page | e2220021120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Fransen, Katharina A Av-Ron, Sarah H M Buchanan, Tess R Walsh, Dylan J Rota, Dechen T Van Note, Lana Olsen, Bradley D |
description | The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single
bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors. |
doi_str_mv | 10.1073/pnas.2220021120 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10266013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821343795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</originalsourceid><addsrcrecordid>eNpdkc9LwzAYhoMobk7P3qTgxUu3L2mStieRoU4YeNFzSNuvW0fX1KQd7r83Y3P-OAWSJy_Py0vINYUxhTiatI12Y8YYAKOUwQkZUkhpKHkKp2Tob-Mw4YwPyIVzKwBIRQLnZBDFTLBUpEPyMqsWy7BbWtMvlm3fBfjZoq3W2HS6q0wTlMYGReVys0G7DUwZZJUpcGF1obMag9bUW3QdWndJzkpdO7w6nCPy_vT4Np2F89fnl-nDPMw5Y12YQSk55FKmnAmaQYJCsqwQScnLBKmAHAUrYkgTClFRYpyh0FJDrmMPFToakft9bttnayxyb2p1rVovre1WGV2pvy9NtVQLs1EUmJRAI59wd0iw5qP39mrtC2Jd6wZN7xRLGI14FKfCo7f_0JXpbeP77SjJqbcET032VG6NcxbLow0FtdtJ7XZSPzv5Hze_Sxz572GiL_mtkDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826418100</pqid></control><display><type>article</type><title>High-throughput experimentation for discovery of biodegradable polyesters</title><source>PubMed Central</source><creator>Fransen, Katharina A ; Av-Ron, Sarah H M ; Buchanan, Tess R ; Walsh, Dylan J ; Rota, Dechen T ; Van Note, Lana ; Olsen, Bradley D</creator><creatorcontrib>Fransen, Katharina A ; Av-Ron, Sarah H M ; Buchanan, Tess R ; Walsh, Dylan J ; Rota, Dechen T ; Van Note, Lana ; Olsen, Bradley D</creatorcontrib><description>The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single
bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2220021120</identifier><identifier>PMID: 37252959</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Automation ; Benzene ; Biodegradability ; Biodegradable Plastics ; Biodegradation ; Biodegradation, Environmental ; Bioplastics ; Chemical synthesis ; Datasets ; Machine learning ; Measurement methods ; Physical Sciences ; Plastic pollution ; Plastics - chemistry ; Polyester resins ; Polyesters ; Polyesters - chemistry ; Polymers ; Research Design</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (23), p.e2220021120</ispartof><rights>Copyright National Academy of Sciences Jun 6, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</citedby><cites>FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</cites><orcidid>0000-0002-1672-7736 ; 0000-0001-7981-2770 ; 0000-0001-5438-7149 ; 0000-0002-7272-7140 ; 0000-0002-1612-1777 ; 0000-0003-0885-381X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37252959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fransen, Katharina A</creatorcontrib><creatorcontrib>Av-Ron, Sarah H M</creatorcontrib><creatorcontrib>Buchanan, Tess R</creatorcontrib><creatorcontrib>Walsh, Dylan J</creatorcontrib><creatorcontrib>Rota, Dechen T</creatorcontrib><creatorcontrib>Van Note, Lana</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><title>High-throughput experimentation for discovery of biodegradable polyesters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single
bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.</description><subject>Automation</subject><subject>Benzene</subject><subject>Biodegradability</subject><subject>Biodegradable Plastics</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bioplastics</subject><subject>Chemical synthesis</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Measurement methods</subject><subject>Physical Sciences</subject><subject>Plastic pollution</subject><subject>Plastics - chemistry</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyesters - chemistry</subject><subject>Polymers</subject><subject>Research Design</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LwzAYhoMobk7P3qTgxUu3L2mStieRoU4YeNFzSNuvW0fX1KQd7r83Y3P-OAWSJy_Py0vINYUxhTiatI12Y8YYAKOUwQkZUkhpKHkKp2Tob-Mw4YwPyIVzKwBIRQLnZBDFTLBUpEPyMqsWy7BbWtMvlm3fBfjZoq3W2HS6q0wTlMYGReVys0G7DUwZZJUpcGF1obMag9bUW3QdWndJzkpdO7w6nCPy_vT4Np2F89fnl-nDPMw5Y12YQSk55FKmnAmaQYJCsqwQScnLBKmAHAUrYkgTClFRYpyh0FJDrmMPFToakft9bttnayxyb2p1rVovre1WGV2pvy9NtVQLs1EUmJRAI59wd0iw5qP39mrtC2Jd6wZN7xRLGI14FKfCo7f_0JXpbeP77SjJqbcET032VG6NcxbLow0FtdtJ7XZSPzv5Hze_Sxz572GiL_mtkDQ</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Fransen, Katharina A</creator><creator>Av-Ron, Sarah H M</creator><creator>Buchanan, Tess R</creator><creator>Walsh, Dylan J</creator><creator>Rota, Dechen T</creator><creator>Van Note, Lana</creator><creator>Olsen, Bradley D</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1672-7736</orcidid><orcidid>https://orcid.org/0000-0001-7981-2770</orcidid><orcidid>https://orcid.org/0000-0001-5438-7149</orcidid><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-1612-1777</orcidid><orcidid>https://orcid.org/0000-0003-0885-381X</orcidid></search><sort><creationdate>20230606</creationdate><title>High-throughput experimentation for discovery of biodegradable polyesters</title><author>Fransen, Katharina A ; Av-Ron, Sarah H M ; Buchanan, Tess R ; Walsh, Dylan J ; Rota, Dechen T ; Van Note, Lana ; Olsen, Bradley D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Benzene</topic><topic>Biodegradability</topic><topic>Biodegradable Plastics</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bioplastics</topic><topic>Chemical synthesis</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Measurement methods</topic><topic>Physical Sciences</topic><topic>Plastic pollution</topic><topic>Plastics - chemistry</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyesters - chemistry</topic><topic>Polymers</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fransen, Katharina A</creatorcontrib><creatorcontrib>Av-Ron, Sarah H M</creatorcontrib><creatorcontrib>Buchanan, Tess R</creatorcontrib><creatorcontrib>Walsh, Dylan J</creatorcontrib><creatorcontrib>Rota, Dechen T</creatorcontrib><creatorcontrib>Van Note, Lana</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fransen, Katharina A</au><au>Av-Ron, Sarah H M</au><au>Buchanan, Tess R</au><au>Walsh, Dylan J</au><au>Rota, Dechen T</au><au>Van Note, Lana</au><au>Olsen, Bradley D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput experimentation for discovery of biodegradable polyesters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-06-06</date><risdate>2023</risdate><volume>120</volume><issue>23</issue><spage>e2220021120</spage><pages>e2220021120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single
bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37252959</pmid><doi>10.1073/pnas.2220021120</doi><orcidid>https://orcid.org/0000-0002-1672-7736</orcidid><orcidid>https://orcid.org/0000-0001-7981-2770</orcidid><orcidid>https://orcid.org/0000-0001-5438-7149</orcidid><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-1612-1777</orcidid><orcidid>https://orcid.org/0000-0003-0885-381X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (23), p.e2220021120 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10266013 |
source | PubMed Central |
subjects | Automation Benzene Biodegradability Biodegradable Plastics Biodegradation Biodegradation, Environmental Bioplastics Chemical synthesis Datasets Machine learning Measurement methods Physical Sciences Plastic pollution Plastics - chemistry Polyester resins Polyesters Polyesters - chemistry Polymers Research Design |
title | High-throughput experimentation for discovery of biodegradable polyesters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20experimentation%20for%20discovery%20of%20biodegradable%20polyesters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fransen,%20Katharina%20A&rft.date=2023-06-06&rft.volume=120&rft.issue=23&rft.spage=e2220021120&rft.pages=e2220021120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2220021120&rft_dat=%3Cproquest_pubme%3E2821343795%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2826418100&rft_id=info:pmid/37252959&rfr_iscdi=true |