Loading…

High-throughput experimentation for discovery of biodegradable polyesters

The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new mater...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-06, Vol.120 (23), p.e2220021120
Main Authors: Fransen, Katharina A, Av-Ron, Sarah H M, Buchanan, Tess R, Walsh, Dylan J, Rota, Dechen T, Van Note, Lana, Olsen, Bradley D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3
cites cdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3
container_end_page
container_issue 23
container_start_page e2220021120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Fransen, Katharina A
Av-Ron, Sarah H M
Buchanan, Tess R
Walsh, Dylan J
Rota, Dechen T
Van Note, Lana
Olsen, Bradley D
description The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.
doi_str_mv 10.1073/pnas.2220021120
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10266013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821343795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</originalsourceid><addsrcrecordid>eNpdkc9LwzAYhoMobk7P3qTgxUu3L2mStieRoU4YeNFzSNuvW0fX1KQd7r83Y3P-OAWSJy_Py0vINYUxhTiatI12Y8YYAKOUwQkZUkhpKHkKp2Tob-Mw4YwPyIVzKwBIRQLnZBDFTLBUpEPyMqsWy7BbWtMvlm3fBfjZoq3W2HS6q0wTlMYGReVys0G7DUwZZJUpcGF1obMag9bUW3QdWndJzkpdO7w6nCPy_vT4Np2F89fnl-nDPMw5Y12YQSk55FKmnAmaQYJCsqwQScnLBKmAHAUrYkgTClFRYpyh0FJDrmMPFToakft9bttnayxyb2p1rVovre1WGV2pvy9NtVQLs1EUmJRAI59wd0iw5qP39mrtC2Jd6wZN7xRLGI14FKfCo7f_0JXpbeP77SjJqbcET032VG6NcxbLow0FtdtJ7XZSPzv5Hze_Sxz572GiL_mtkDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826418100</pqid></control><display><type>article</type><title>High-throughput experimentation for discovery of biodegradable polyesters</title><source>PubMed Central</source><creator>Fransen, Katharina A ; Av-Ron, Sarah H M ; Buchanan, Tess R ; Walsh, Dylan J ; Rota, Dechen T ; Van Note, Lana ; Olsen, Bradley D</creator><creatorcontrib>Fransen, Katharina A ; Av-Ron, Sarah H M ; Buchanan, Tess R ; Walsh, Dylan J ; Rota, Dechen T ; Van Note, Lana ; Olsen, Bradley D</creatorcontrib><description>The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2220021120</identifier><identifier>PMID: 37252959</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Automation ; Benzene ; Biodegradability ; Biodegradable Plastics ; Biodegradation ; Biodegradation, Environmental ; Bioplastics ; Chemical synthesis ; Datasets ; Machine learning ; Measurement methods ; Physical Sciences ; Plastic pollution ; Plastics - chemistry ; Polyester resins ; Polyesters ; Polyesters - chemistry ; Polymers ; Research Design</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (23), p.e2220021120</ispartof><rights>Copyright National Academy of Sciences Jun 6, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</citedby><cites>FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</cites><orcidid>0000-0002-1672-7736 ; 0000-0001-7981-2770 ; 0000-0001-5438-7149 ; 0000-0002-7272-7140 ; 0000-0002-1612-1777 ; 0000-0003-0885-381X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37252959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fransen, Katharina A</creatorcontrib><creatorcontrib>Av-Ron, Sarah H M</creatorcontrib><creatorcontrib>Buchanan, Tess R</creatorcontrib><creatorcontrib>Walsh, Dylan J</creatorcontrib><creatorcontrib>Rota, Dechen T</creatorcontrib><creatorcontrib>Van Note, Lana</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><title>High-throughput experimentation for discovery of biodegradable polyesters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.</description><subject>Automation</subject><subject>Benzene</subject><subject>Biodegradability</subject><subject>Biodegradable Plastics</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bioplastics</subject><subject>Chemical synthesis</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Measurement methods</subject><subject>Physical Sciences</subject><subject>Plastic pollution</subject><subject>Plastics - chemistry</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyesters - chemistry</subject><subject>Polymers</subject><subject>Research Design</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LwzAYhoMobk7P3qTgxUu3L2mStieRoU4YeNFzSNuvW0fX1KQd7r83Y3P-OAWSJy_Py0vINYUxhTiatI12Y8YYAKOUwQkZUkhpKHkKp2Tob-Mw4YwPyIVzKwBIRQLnZBDFTLBUpEPyMqsWy7BbWtMvlm3fBfjZoq3W2HS6q0wTlMYGReVys0G7DUwZZJUpcGF1obMag9bUW3QdWndJzkpdO7w6nCPy_vT4Np2F89fnl-nDPMw5Y12YQSk55FKmnAmaQYJCsqwQScnLBKmAHAUrYkgTClFRYpyh0FJDrmMPFToakft9bttnayxyb2p1rVovre1WGV2pvy9NtVQLs1EUmJRAI59wd0iw5qP39mrtC2Jd6wZN7xRLGI14FKfCo7f_0JXpbeP77SjJqbcET032VG6NcxbLow0FtdtJ7XZSPzv5Hze_Sxz572GiL_mtkDQ</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Fransen, Katharina A</creator><creator>Av-Ron, Sarah H M</creator><creator>Buchanan, Tess R</creator><creator>Walsh, Dylan J</creator><creator>Rota, Dechen T</creator><creator>Van Note, Lana</creator><creator>Olsen, Bradley D</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1672-7736</orcidid><orcidid>https://orcid.org/0000-0001-7981-2770</orcidid><orcidid>https://orcid.org/0000-0001-5438-7149</orcidid><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-1612-1777</orcidid><orcidid>https://orcid.org/0000-0003-0885-381X</orcidid></search><sort><creationdate>20230606</creationdate><title>High-throughput experimentation for discovery of biodegradable polyesters</title><author>Fransen, Katharina A ; Av-Ron, Sarah H M ; Buchanan, Tess R ; Walsh, Dylan J ; Rota, Dechen T ; Van Note, Lana ; Olsen, Bradley D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Benzene</topic><topic>Biodegradability</topic><topic>Biodegradable Plastics</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bioplastics</topic><topic>Chemical synthesis</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Measurement methods</topic><topic>Physical Sciences</topic><topic>Plastic pollution</topic><topic>Plastics - chemistry</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyesters - chemistry</topic><topic>Polymers</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fransen, Katharina A</creatorcontrib><creatorcontrib>Av-Ron, Sarah H M</creatorcontrib><creatorcontrib>Buchanan, Tess R</creatorcontrib><creatorcontrib>Walsh, Dylan J</creatorcontrib><creatorcontrib>Rota, Dechen T</creatorcontrib><creatorcontrib>Van Note, Lana</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fransen, Katharina A</au><au>Av-Ron, Sarah H M</au><au>Buchanan, Tess R</au><au>Walsh, Dylan J</au><au>Rota, Dechen T</au><au>Van Note, Lana</au><au>Olsen, Bradley D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput experimentation for discovery of biodegradable polyesters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-06-06</date><risdate>2023</risdate><volume>120</volume><issue>23</issue><spage>e2220021120</spage><pages>e2220021120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37252959</pmid><doi>10.1073/pnas.2220021120</doi><orcidid>https://orcid.org/0000-0002-1672-7736</orcidid><orcidid>https://orcid.org/0000-0001-7981-2770</orcidid><orcidid>https://orcid.org/0000-0001-5438-7149</orcidid><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-1612-1777</orcidid><orcidid>https://orcid.org/0000-0003-0885-381X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (23), p.e2220021120
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10266013
source PubMed Central
subjects Automation
Benzene
Biodegradability
Biodegradable Plastics
Biodegradation
Biodegradation, Environmental
Bioplastics
Chemical synthesis
Datasets
Machine learning
Measurement methods
Physical Sciences
Plastic pollution
Plastics - chemistry
Polyester resins
Polyesters
Polyesters - chemistry
Polymers
Research Design
title High-throughput experimentation for discovery of biodegradable polyesters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20experimentation%20for%20discovery%20of%20biodegradable%20polyesters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fransen,%20Katharina%20A&rft.date=2023-06-06&rft.volume=120&rft.issue=23&rft.spage=e2220021120&rft.pages=e2220021120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2220021120&rft_dat=%3Cproquest_pubme%3E2821343795%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-b0f640c6694251b08e562bd58f4f8e150ce52d7098103dfe7be5a6a0ca7d58da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2826418100&rft_id=info:pmid/37252959&rfr_iscdi=true