Loading…

ACO-KELM: Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine for classification of skin cancer

Due to the presence of redundant and irrelevant features in large-dimensional biomedical datasets, the prediction accuracy of disease diagnosis can often be decreased. Therefore, it is important to adopt feature extraction methodologies that can deal with problem structures and identify underlying d...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2023-12, Vol.232, p.120719-120719, Article 120719
Main Authors: Liu, Nannan, Rejeesh, M.R., Sundararaj, Vinu, Gunasundari, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-926043a5a3d5e17864dbfa94779733e57265b4d7e32c3f35221bd936c8699c3c3
cites cdi_FETCH-LOGICAL-c456t-926043a5a3d5e17864dbfa94779733e57265b4d7e32c3f35221bd936c8699c3c3
container_end_page 120719
container_issue
container_start_page 120719
container_title Expert systems with applications
container_volume 232
creator Liu, Nannan
Rejeesh, M.R.
Sundararaj, Vinu
Gunasundari, B.
description Due to the presence of redundant and irrelevant features in large-dimensional biomedical datasets, the prediction accuracy of disease diagnosis can often be decreased. Therefore, it is important to adopt feature extraction methodologies that can deal with problem structures and identify underlying data patterns. In this paper, we propose a novel approach called the Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine (ACO-KSELM) to accurately predict different types of skin cancer by analyzing high-dimensional datasets. To evaluate the proposed ACO-KSELM method, we used four different skin cancer image datasets: ISIC 2016, ACS, HAM10000, and PAD-UFES-20. These dermoscopic image datasets were preprocessed using Gaussian filters to remove noise and artifacts, and relevant features based on color, texture, and shape were extracted using color histogram, Haralick texture, and Hu moment extraction approaches, respectively. Finally, the proposed ACO-KSELM method accurately predicted and classified the extracted features into Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Bowen’s disease (BOD), Melanoma (MEL), and Nevus (NEV) categories. The analytical results showed that the proposed method achieved a higher rate of prediction accuracy of about 98.9%, 98.7%, 98.6%, and 97.9% for the ISIC 2016, ACS, HAM10000, and PAD-UFES-20 datasets, respectively.
doi_str_mv 10.1016/j.eswa.2023.120719
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10268820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417423012216</els_id><sourcerecordid>2830213908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-926043a5a3d5e17864dbfa94779733e57265b4d7e32c3f35221bd936c8699c3c3</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi0EYsvCH-CAfOSS4o_YjhESqqryoe2qB-BsOc5k1yWxi-2Uj19Pqi4ruHAajeadd0bvg9BzSpaUUPlqv4T83S4ZYXxJGVFUP0AL2iheSaX5Q7QgWqiqpqq-QE9y3hNCFSHqMbrgikvGhFigabXeVVeb7fVrvArF43VMMdijT1PGu0Pxo_8FHb6CFGCoWpvn5lPsy2GY55sfJcEIeAs2BR9u8LV1tz4A7mPCbrA5-947W3wMOPY4f_UBOxscpKfoUW-HDM_u6iX68m7zef2h2u7ef1yvtpWrhSyVZpLU3ArLOwFUNbLu2t7qWimtOAehmBRt3SngzPGeC8Zo22kuXSO1dtzxS_T27HuY2hE6B6EkO5hD8qNNP0203vw7Cf7W3MSjoYTJpmFkdnh555DitwlyMaPPDobBBohTNqzhhFGuSTNL2VnqUsw5QX9_hxJzAmb25gTMnICZM7B56cXfH96v_CE0C96cBTDndPSQTHYe5hA7n8AV00X_P__fJBSn6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830213908</pqid></control><display><type>article</type><title>ACO-KELM: Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine for classification of skin cancer</title><source>Elsevier</source><creator>Liu, Nannan ; Rejeesh, M.R. ; Sundararaj, Vinu ; Gunasundari, B.</creator><creatorcontrib>Liu, Nannan ; Rejeesh, M.R. ; Sundararaj, Vinu ; Gunasundari, B.</creatorcontrib><description>Due to the presence of redundant and irrelevant features in large-dimensional biomedical datasets, the prediction accuracy of disease diagnosis can often be decreased. Therefore, it is important to adopt feature extraction methodologies that can deal with problem structures and identify underlying data patterns. In this paper, we propose a novel approach called the Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine (ACO-KSELM) to accurately predict different types of skin cancer by analyzing high-dimensional datasets. To evaluate the proposed ACO-KSELM method, we used four different skin cancer image datasets: ISIC 2016, ACS, HAM10000, and PAD-UFES-20. These dermoscopic image datasets were preprocessed using Gaussian filters to remove noise and artifacts, and relevant features based on color, texture, and shape were extracted using color histogram, Haralick texture, and Hu moment extraction approaches, respectively. Finally, the proposed ACO-KSELM method accurately predicted and classified the extracted features into Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Bowen’s disease (BOD), Melanoma (MEL), and Nevus (NEV) categories. The analytical results showed that the proposed method achieved a higher rate of prediction accuracy of about 98.9%, 98.7%, 98.6%, and 97.9% for the ISIC 2016, ACS, HAM10000, and PAD-UFES-20 datasets, respectively.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>EISSN: 0957-4174</identifier><identifier>DOI: 10.1016/j.eswa.2023.120719</identifier><identifier>PMID: 37362255</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Anti coronavirus optimization ; High dimensional dataset ; Kernel-based soft plus extreme learning machine ; Prediction accuracy ; Skin cancer</subject><ispartof>Expert systems with applications, 2023-12, Vol.232, p.120719-120719, Article 120719</ispartof><rights>2023 Elsevier Ltd</rights><rights>2023 Elsevier Ltd. All rights reserved.</rights><rights>2023 Elsevier Ltd. All rights reserved. 2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-926043a5a3d5e17864dbfa94779733e57265b4d7e32c3f35221bd936c8699c3c3</citedby><cites>FETCH-LOGICAL-c456t-926043a5a3d5e17864dbfa94779733e57265b4d7e32c3f35221bd936c8699c3c3</cites><orcidid>0009-0006-8202-367X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37362255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Nannan</creatorcontrib><creatorcontrib>Rejeesh, M.R.</creatorcontrib><creatorcontrib>Sundararaj, Vinu</creatorcontrib><creatorcontrib>Gunasundari, B.</creatorcontrib><title>ACO-KELM: Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine for classification of skin cancer</title><title>Expert systems with applications</title><addtitle>Expert Syst Appl</addtitle><description>Due to the presence of redundant and irrelevant features in large-dimensional biomedical datasets, the prediction accuracy of disease diagnosis can often be decreased. Therefore, it is important to adopt feature extraction methodologies that can deal with problem structures and identify underlying data patterns. In this paper, we propose a novel approach called the Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine (ACO-KSELM) to accurately predict different types of skin cancer by analyzing high-dimensional datasets. To evaluate the proposed ACO-KSELM method, we used four different skin cancer image datasets: ISIC 2016, ACS, HAM10000, and PAD-UFES-20. These dermoscopic image datasets were preprocessed using Gaussian filters to remove noise and artifacts, and relevant features based on color, texture, and shape were extracted using color histogram, Haralick texture, and Hu moment extraction approaches, respectively. Finally, the proposed ACO-KSELM method accurately predicted and classified the extracted features into Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Bowen’s disease (BOD), Melanoma (MEL), and Nevus (NEV) categories. The analytical results showed that the proposed method achieved a higher rate of prediction accuracy of about 98.9%, 98.7%, 98.6%, and 97.9% for the ISIC 2016, ACS, HAM10000, and PAD-UFES-20 datasets, respectively.</description><subject>Anti coronavirus optimization</subject><subject>High dimensional dataset</subject><subject>Kernel-based soft plus extreme learning machine</subject><subject>Prediction accuracy</subject><subject>Skin cancer</subject><issn>0957-4174</issn><issn>1873-6793</issn><issn>0957-4174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhi0EYsvCH-CAfOSS4o_YjhESqqryoe2qB-BsOc5k1yWxi-2Uj19Pqi4ruHAajeadd0bvg9BzSpaUUPlqv4T83S4ZYXxJGVFUP0AL2iheSaX5Q7QgWqiqpqq-QE9y3hNCFSHqMbrgikvGhFigabXeVVeb7fVrvArF43VMMdijT1PGu0Pxo_8FHb6CFGCoWpvn5lPsy2GY55sfJcEIeAs2BR9u8LV1tz4A7mPCbrA5-947W3wMOPY4f_UBOxscpKfoUW-HDM_u6iX68m7zef2h2u7ef1yvtpWrhSyVZpLU3ArLOwFUNbLu2t7qWimtOAehmBRt3SngzPGeC8Zo22kuXSO1dtzxS_T27HuY2hE6B6EkO5hD8qNNP0203vw7Cf7W3MSjoYTJpmFkdnh555DitwlyMaPPDobBBohTNqzhhFGuSTNL2VnqUsw5QX9_hxJzAmb25gTMnICZM7B56cXfH96v_CE0C96cBTDndPSQTHYe5hA7n8AV00X_P__fJBSn6A</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Nannan</creator><creator>Rejeesh, M.R.</creator><creator>Sundararaj, Vinu</creator><creator>Gunasundari, B.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0006-8202-367X</orcidid></search><sort><creationdate>20231201</creationdate><title>ACO-KELM: Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine for classification of skin cancer</title><author>Liu, Nannan ; Rejeesh, M.R. ; Sundararaj, Vinu ; Gunasundari, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-926043a5a3d5e17864dbfa94779733e57265b4d7e32c3f35221bd936c8699c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti coronavirus optimization</topic><topic>High dimensional dataset</topic><topic>Kernel-based soft plus extreme learning machine</topic><topic>Prediction accuracy</topic><topic>Skin cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Nannan</creatorcontrib><creatorcontrib>Rejeesh, M.R.</creatorcontrib><creatorcontrib>Sundararaj, Vinu</creatorcontrib><creatorcontrib>Gunasundari, B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Nannan</au><au>Rejeesh, M.R.</au><au>Sundararaj, Vinu</au><au>Gunasundari, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACO-KELM: Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine for classification of skin cancer</atitle><jtitle>Expert systems with applications</jtitle><addtitle>Expert Syst Appl</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>232</volume><spage>120719</spage><epage>120719</epage><pages>120719-120719</pages><artnum>120719</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><eissn>0957-4174</eissn><abstract>Due to the presence of redundant and irrelevant features in large-dimensional biomedical datasets, the prediction accuracy of disease diagnosis can often be decreased. Therefore, it is important to adopt feature extraction methodologies that can deal with problem structures and identify underlying data patterns. In this paper, we propose a novel approach called the Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine (ACO-KSELM) to accurately predict different types of skin cancer by analyzing high-dimensional datasets. To evaluate the proposed ACO-KSELM method, we used four different skin cancer image datasets: ISIC 2016, ACS, HAM10000, and PAD-UFES-20. These dermoscopic image datasets were preprocessed using Gaussian filters to remove noise and artifacts, and relevant features based on color, texture, and shape were extracted using color histogram, Haralick texture, and Hu moment extraction approaches, respectively. Finally, the proposed ACO-KSELM method accurately predicted and classified the extracted features into Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Bowen’s disease (BOD), Melanoma (MEL), and Nevus (NEV) categories. The analytical results showed that the proposed method achieved a higher rate of prediction accuracy of about 98.9%, 98.7%, 98.6%, and 97.9% for the ISIC 2016, ACS, HAM10000, and PAD-UFES-20 datasets, respectively.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37362255</pmid><doi>10.1016/j.eswa.2023.120719</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0006-8202-367X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2023-12, Vol.232, p.120719-120719, Article 120719
issn 0957-4174
1873-6793
0957-4174
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10268820
source Elsevier
subjects Anti coronavirus optimization
High dimensional dataset
Kernel-based soft plus extreme learning machine
Prediction accuracy
Skin cancer
title ACO-KELM: Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine for classification of skin cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACO-KELM:%20Anti%20Coronavirus%20Optimized%20Kernel-based%20Softplus%20Extreme%20Learning%20Machine%20for%20classification%20of%20skin%20cancer&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Liu,%20Nannan&rft.date=2023-12-01&rft.volume=232&rft.spage=120719&rft.epage=120719&rft.pages=120719-120719&rft.artnum=120719&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2023.120719&rft_dat=%3Cproquest_pubme%3E2830213908%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-926043a5a3d5e17864dbfa94779733e57265b4d7e32c3f35221bd936c8699c3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2830213908&rft_id=info:pmid/37362255&rfr_iscdi=true