Loading…
In-Plane Porous Graphene: A Promising Anode Material with High Ion Mobility and Energy Storage for Rubidium-Ion Batteries
Rubidium-ion batteries (RIBs) have received a lot of attention in the quantum field because of their fast release and reversible advantages as alkali sources. However, the anode material of RIBs still follows graphite, whose layer spacing can greatly restrict the diffusion and storage capability of...
Saved in:
Published in: | ACS omega 2023-06, Vol.8 (24), p.21842-21852 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rubidium-ion batteries (RIBs) have received a lot of attention in the quantum field because of their fast release and reversible advantages as alkali sources. However, the anode material of RIBs still follows graphite, whose layer spacing can greatly restrict the diffusion and storage capability of Rb-ions, posing a significant barrier to RIB development. Herein, using first-principles calculations, the potential performance of three kinds of in-plane porous graphene with pore sizes of 5.88 Å (HG588), 10.39 Å (HG1039), and 14.20 Å (HG1420) as anode materials for RIBs was explored. The results indicate that HG1039 appears to be an appropriate anode material for RIBs. HG1039 has excellent thermodynamic stability and a volume expansion of |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c01548 |