Loading…

RecA and SSB genome-wide distribution in ssDNA gaps and ends in Escherichia coli

Abstract Single-stranded DNA (ssDNA) gapped regions are common intermediates in DNA transactions. Using a new non-denaturing bisulfite treatment combined with ChIP-seq, abbreviated ‘ssGap-seq’, we explore RecA and SSB binding to ssDNA on a genomic scale in E. coli in a wide range of genetic backgrou...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2023-06, Vol.51 (11), p.5527-5546
Main Authors: Pham, Phuong, Wood, Elizabeth A, Cox, Michael M, Goodman, Myron F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Single-stranded DNA (ssDNA) gapped regions are common intermediates in DNA transactions. Using a new non-denaturing bisulfite treatment combined with ChIP-seq, abbreviated ‘ssGap-seq’, we explore RecA and SSB binding to ssDNA on a genomic scale in E. coli in a wide range of genetic backgrounds. Some results are expected. During log phase growth, RecA and SSB assembly profiles coincide globally, concentrated on the lagging strand and enhanced after UV irradiation. Unexpected results also abound. Near the terminus, RecA binding is favored over SSB, binding patterns change in the absence of RecG, and the absence of XerD results in massive RecA assembly. RecA may substitute for the absence of XerCD to resolve chromosome dimers. A RecA loading pathway may exist that is independent of RecBCD and RecFOR. Two prominent and focused peaks of RecA binding revealed a pair of 222 bp and GC-rich repeats, equidistant from dif and flanking the Ter domain. The repeats, here named RRS for replication risk sequence, trigger a genomically programmed generation of post-replication gaps that may play a special role in relieving topological stress during replication termination and chromosome segregation. As demonstrated here, ssGap-seq provides a new window on previously inaccessible aspects of ssDNA metabolism. Graphical Abstract Graphical Abstract ssGap-seq for RecA/SSB binding to genomic ssDNA.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkad263