Loading…

Infection responsive coatings to reduce biofilm formation and encrustation of urinary catheters

The care of patients undergoing long-term urethral catheterization is frequently complicated by Proteus mirabilis infection. This organism forms dense, crystalline biofilms, which block catheters leading to serious clinical conditions. However, there are currently no truly effective approaches to co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied microbiology 2023-06, Vol.134 (6)
Main Authors: Slate, Anthony J, Clarke, Ocean E, Kerio, Mina, Nzakizwanayo, Jonathan, Patel, Bhavik Anil, Jones, Brian V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The care of patients undergoing long-term urethral catheterization is frequently complicated by Proteus mirabilis infection. This organism forms dense, crystalline biofilms, which block catheters leading to serious clinical conditions. However, there are currently no truly effective approaches to control this problem. Here, we describe the development of a novel theranostic catheter coating, to simultaneously provide early warning of blockage, and actively delay crystalline biofilm formation. The coating comprises of a pH sensitive upper polymer layer (poly(methyl methacrylate-co-methacrylic acid); Eudragit S 100®) and a hydrogel base layer of poly(vinyl alcohol), which is loaded with therapeutic agents (acetohydroxamic acid or ciprofloxacin hydrochloride) and a fluorescent dye, 5(6)-carboxyfluorescein (CF). The elevation of urinary pH due to P. mirabilis urease activity results in the dissolution of the upper layer and release of cargo agents contained in the base layer. Experiments using in vitro models, which were representative of P. mirabilis catheter-associated urinary tract infections, demonstrated that these coatings significantly delay time taken for catheters to block. Coatings containing both CF dye and ciprofloxacin HCl were able to provide an average of ca. 79 h advanced warning of blockage and extend catheter lifespan ca. 3.40-fold. This study has demonstrated the potential for theranostic, infection-responsive coatings to form a promising approach to combat catheter encrustation and actively delay blockage.
ISSN:1365-2672
1364-5072
1365-2672
DOI:10.1093/jambio/lxad121