Loading…
Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury
The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(...
Saved in:
Published in: | International journal of molecular sciences 2023-06, Vol.24 (12), p.10250 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23 |
container_end_page | |
container_issue | 12 |
container_start_page | 10250 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Siddiqui, Ahad M. Thiele, Frederic Stewart, Rachel N. Rangnick, Simone Weiss, Georgina J. Chen, Bingkun K. Silvernail, Jodi L. Strickland, Tammy Nesbitt, Jarred J. Lim, Kelly Schwarzbauer, Jean E. Schwartz, Jeffrey Yaszemski, Michael J. Windebank, Anthony J. Madigan, Nicolas N. |
description | The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery. |
doi_str_mv | 10.3390/ijms241210250 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829834614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</originalsourceid><addsrcrecordid>eNpdUU1r3DAQNaGFpGmPvQt66cWpvvyhUwlL0wRSNmTTs5GlsVeLrHElO8U_Jv-1XhJK09M8mDfvzczLso-MXgih6Bd3GBKXjDPKC3qSnTHJeU5pWb35B59m71I6UMoFL9RZ9rQdIeS7URuw5N7Zfi3Xi43Ygyc7o7sOvU1kg2HSLrjQkwe35fkOfJdfpgRD69eJHxjQ6wUiwY7c7TGNewx6gkTuIg44AbmHHgJEPTkMRIfVCww-QlzIFXqPv4_Ku9EF7VevaMlNOMxxeZ-97bRP8OGlnmc_r749bK7z2-33m83lbW6EElOudCWlsLaiSjO7Ykt1wcqiqpmuDJcgRSFqJVnRmbaAlhvgrSw6MDUXWnNxnn191h3ndgBrIExR-2aMbtBxaVC75nUnuH3T42OzvloppqpV4fOLQsRfM6SpGVwy4L0OgHNqeC1oWUpBj2af_qMecI7r5UcWV7WQJZMrK39mmYgpRej-bsNoc4y7eRW3-AMeDaD7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829834614</pqid></control><display><type>article</type><title>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Siddiqui, Ahad M. ; Thiele, Frederic ; Stewart, Rachel N. ; Rangnick, Simone ; Weiss, Georgina J. ; Chen, Bingkun K. ; Silvernail, Jodi L. ; Strickland, Tammy ; Nesbitt, Jarred J. ; Lim, Kelly ; Schwarzbauer, Jean E. ; Schwartz, Jeffrey ; Yaszemski, Michael J. ; Windebank, Anthony J. ; Madigan, Nicolas N.</creator><creatorcontrib>Siddiqui, Ahad M. ; Thiele, Frederic ; Stewart, Rachel N. ; Rangnick, Simone ; Weiss, Georgina J. ; Chen, Bingkun K. ; Silvernail, Jodi L. ; Strickland, Tammy ; Nesbitt, Jarred J. ; Lim, Kelly ; Schwarzbauer, Jean E. ; Schwartz, Jeffrey ; Yaszemski, Michael J. ; Windebank, Anthony J. ; Madigan, Nicolas N.</creatorcontrib><description>The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms241210250</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Axons ; Biomaterials ; Biomedical materials ; Cell number ; Cells ; Design ; Extracellular matrix ; Fibronectin ; Hydrogels ; Immune system ; Inflammation ; Laminin ; Limbs ; Microglia ; Neural prostheses ; Pattern formation ; Patterning ; Phosphonates ; Polyethylene glycol ; Prosthetics ; Regeneration ; Scaffolds ; Self-assembled monolayers ; Self-assembly ; Spinal cord injuries ; Surface chemistry ; Surgical implants ; Titanium dioxide ; Topography</subject><ispartof>International journal of molecular sciences, 2023-06, Vol.24 (12), p.10250</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</citedby><cites>FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</cites><orcidid>0000-0001-7293-0205 ; 0000-0003-4185-446X ; 0000-0003-1012-7593 ; 0000-0003-3652-7456 ; 0000-0003-3334-1728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829834614/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829834614?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Siddiqui, Ahad M.</creatorcontrib><creatorcontrib>Thiele, Frederic</creatorcontrib><creatorcontrib>Stewart, Rachel N.</creatorcontrib><creatorcontrib>Rangnick, Simone</creatorcontrib><creatorcontrib>Weiss, Georgina J.</creatorcontrib><creatorcontrib>Chen, Bingkun K.</creatorcontrib><creatorcontrib>Silvernail, Jodi L.</creatorcontrib><creatorcontrib>Strickland, Tammy</creatorcontrib><creatorcontrib>Nesbitt, Jarred J.</creatorcontrib><creatorcontrib>Lim, Kelly</creatorcontrib><creatorcontrib>Schwarzbauer, Jean E.</creatorcontrib><creatorcontrib>Schwartz, Jeffrey</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Windebank, Anthony J.</creatorcontrib><creatorcontrib>Madigan, Nicolas N.</creatorcontrib><title>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</title><title>International journal of molecular sciences</title><description>The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.</description><subject>Axons</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell number</subject><subject>Cells</subject><subject>Design</subject><subject>Extracellular matrix</subject><subject>Fibronectin</subject><subject>Hydrogels</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Laminin</subject><subject>Limbs</subject><subject>Microglia</subject><subject>Neural prostheses</subject><subject>Pattern formation</subject><subject>Patterning</subject><subject>Phosphonates</subject><subject>Polyethylene glycol</subject><subject>Prosthetics</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Spinal cord injuries</subject><subject>Surface chemistry</subject><subject>Surgical implants</subject><subject>Titanium dioxide</subject><subject>Topography</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUU1r3DAQNaGFpGmPvQt66cWpvvyhUwlL0wRSNmTTs5GlsVeLrHElO8U_Jv-1XhJK09M8mDfvzczLso-MXgih6Bd3GBKXjDPKC3qSnTHJeU5pWb35B59m71I6UMoFL9RZ9rQdIeS7URuw5N7Zfi3Xi43Ygyc7o7sOvU1kg2HSLrjQkwe35fkOfJdfpgRD69eJHxjQ6wUiwY7c7TGNewx6gkTuIg44AbmHHgJEPTkMRIfVCww-QlzIFXqPv4_Ku9EF7VevaMlNOMxxeZ-97bRP8OGlnmc_r749bK7z2-33m83lbW6EElOudCWlsLaiSjO7Ykt1wcqiqpmuDJcgRSFqJVnRmbaAlhvgrSw6MDUXWnNxnn191h3ndgBrIExR-2aMbtBxaVC75nUnuH3T42OzvloppqpV4fOLQsRfM6SpGVwy4L0OgHNqeC1oWUpBj2af_qMecI7r5UcWV7WQJZMrK39mmYgpRej-bsNoc4y7eRW3-AMeDaD7</recordid><startdate>20230616</startdate><enddate>20230616</enddate><creator>Siddiqui, Ahad M.</creator><creator>Thiele, Frederic</creator><creator>Stewart, Rachel N.</creator><creator>Rangnick, Simone</creator><creator>Weiss, Georgina J.</creator><creator>Chen, Bingkun K.</creator><creator>Silvernail, Jodi L.</creator><creator>Strickland, Tammy</creator><creator>Nesbitt, Jarred J.</creator><creator>Lim, Kelly</creator><creator>Schwarzbauer, Jean E.</creator><creator>Schwartz, Jeffrey</creator><creator>Yaszemski, Michael J.</creator><creator>Windebank, Anthony J.</creator><creator>Madigan, Nicolas N.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7293-0205</orcidid><orcidid>https://orcid.org/0000-0003-4185-446X</orcidid><orcidid>https://orcid.org/0000-0003-1012-7593</orcidid><orcidid>https://orcid.org/0000-0003-3652-7456</orcidid><orcidid>https://orcid.org/0000-0003-3334-1728</orcidid></search><sort><creationdate>20230616</creationdate><title>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</title><author>Siddiqui, Ahad M. ; Thiele, Frederic ; Stewart, Rachel N. ; Rangnick, Simone ; Weiss, Georgina J. ; Chen, Bingkun K. ; Silvernail, Jodi L. ; Strickland, Tammy ; Nesbitt, Jarred J. ; Lim, Kelly ; Schwarzbauer, Jean E. ; Schwartz, Jeffrey ; Yaszemski, Michael J. ; Windebank, Anthony J. ; Madigan, Nicolas N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axons</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell number</topic><topic>Cells</topic><topic>Design</topic><topic>Extracellular matrix</topic><topic>Fibronectin</topic><topic>Hydrogels</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Laminin</topic><topic>Limbs</topic><topic>Microglia</topic><topic>Neural prostheses</topic><topic>Pattern formation</topic><topic>Patterning</topic><topic>Phosphonates</topic><topic>Polyethylene glycol</topic><topic>Prosthetics</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Spinal cord injuries</topic><topic>Surface chemistry</topic><topic>Surgical implants</topic><topic>Titanium dioxide</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, Ahad M.</creatorcontrib><creatorcontrib>Thiele, Frederic</creatorcontrib><creatorcontrib>Stewart, Rachel N.</creatorcontrib><creatorcontrib>Rangnick, Simone</creatorcontrib><creatorcontrib>Weiss, Georgina J.</creatorcontrib><creatorcontrib>Chen, Bingkun K.</creatorcontrib><creatorcontrib>Silvernail, Jodi L.</creatorcontrib><creatorcontrib>Strickland, Tammy</creatorcontrib><creatorcontrib>Nesbitt, Jarred J.</creatorcontrib><creatorcontrib>Lim, Kelly</creatorcontrib><creatorcontrib>Schwarzbauer, Jean E.</creatorcontrib><creatorcontrib>Schwartz, Jeffrey</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Windebank, Anthony J.</creatorcontrib><creatorcontrib>Madigan, Nicolas N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqui, Ahad M.</au><au>Thiele, Frederic</au><au>Stewart, Rachel N.</au><au>Rangnick, Simone</au><au>Weiss, Georgina J.</au><au>Chen, Bingkun K.</au><au>Silvernail, Jodi L.</au><au>Strickland, Tammy</au><au>Nesbitt, Jarred J.</au><au>Lim, Kelly</au><au>Schwarzbauer, Jean E.</au><au>Schwartz, Jeffrey</au><au>Yaszemski, Michael J.</au><au>Windebank, Anthony J.</au><au>Madigan, Nicolas N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</atitle><jtitle>International journal of molecular sciences</jtitle><date>2023-06-16</date><risdate>2023</risdate><volume>24</volume><issue>12</issue><spage>10250</spage><pages>10250-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijms241210250</doi><orcidid>https://orcid.org/0000-0001-7293-0205</orcidid><orcidid>https://orcid.org/0000-0003-4185-446X</orcidid><orcidid>https://orcid.org/0000-0003-1012-7593</orcidid><orcidid>https://orcid.org/0000-0003-3652-7456</orcidid><orcidid>https://orcid.org/0000-0003-3334-1728</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-06, Vol.24 (12), p.10250 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299197 |
source | Publicly Available Content Database; PubMed Central |
subjects | Axons Biomaterials Biomedical materials Cell number Cells Design Extracellular matrix Fibronectin Hydrogels Immune system Inflammation Laminin Limbs Microglia Neural prostheses Pattern formation Patterning Phosphonates Polyethylene glycol Prosthetics Regeneration Scaffolds Self-assembled monolayers Self-assembly Spinal cord injuries Surface chemistry Surgical implants Titanium dioxide Topography |
title | Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-Spaced%20Ridged%20Hydrogel%20Scaffolds%20Containing%20TiO2-Self-Assembled%20Monolayer%20of%20Phosphonates%20Promote%20Regeneration%20and%20Recovery%20Following%20Spinal%20Cord%20Injury&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Siddiqui,%20Ahad%20M.&rft.date=2023-06-16&rft.volume=24&rft.issue=12&rft.spage=10250&rft.pages=10250-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms241210250&rft_dat=%3Cproquest_pubme%3E2829834614%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829834614&rft_id=info:pmid/&rfr_iscdi=true |