Loading…

Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury

The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-06, Vol.24 (12), p.10250
Main Authors: Siddiqui, Ahad M., Thiele, Frederic, Stewart, Rachel N., Rangnick, Simone, Weiss, Georgina J., Chen, Bingkun K., Silvernail, Jodi L., Strickland, Tammy, Nesbitt, Jarred J., Lim, Kelly, Schwarzbauer, Jean E., Schwartz, Jeffrey, Yaszemski, Michael J., Windebank, Anthony J., Madigan, Nicolas N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23
cites cdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23
container_end_page
container_issue 12
container_start_page 10250
container_title International journal of molecular sciences
container_volume 24
creator Siddiqui, Ahad M.
Thiele, Frederic
Stewart, Rachel N.
Rangnick, Simone
Weiss, Georgina J.
Chen, Bingkun K.
Silvernail, Jodi L.
Strickland, Tammy
Nesbitt, Jarred J.
Lim, Kelly
Schwarzbauer, Jean E.
Schwartz, Jeffrey
Yaszemski, Michael J.
Windebank, Anthony J.
Madigan, Nicolas N.
description The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.
doi_str_mv 10.3390/ijms241210250
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829834614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</originalsourceid><addsrcrecordid>eNpdUU1r3DAQNaGFpGmPvQt66cWpvvyhUwlL0wRSNmTTs5GlsVeLrHElO8U_Jv-1XhJK09M8mDfvzczLso-MXgih6Bd3GBKXjDPKC3qSnTHJeU5pWb35B59m71I6UMoFL9RZ9rQdIeS7URuw5N7Zfi3Xi43Ygyc7o7sOvU1kg2HSLrjQkwe35fkOfJdfpgRD69eJHxjQ6wUiwY7c7TGNewx6gkTuIg44AbmHHgJEPTkMRIfVCww-QlzIFXqPv4_Ku9EF7VevaMlNOMxxeZ-97bRP8OGlnmc_r749bK7z2-33m83lbW6EElOudCWlsLaiSjO7Ykt1wcqiqpmuDJcgRSFqJVnRmbaAlhvgrSw6MDUXWnNxnn191h3ndgBrIExR-2aMbtBxaVC75nUnuH3T42OzvloppqpV4fOLQsRfM6SpGVwy4L0OgHNqeC1oWUpBj2af_qMecI7r5UcWV7WQJZMrK39mmYgpRej-bsNoc4y7eRW3-AMeDaD7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829834614</pqid></control><display><type>article</type><title>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Siddiqui, Ahad M. ; Thiele, Frederic ; Stewart, Rachel N. ; Rangnick, Simone ; Weiss, Georgina J. ; Chen, Bingkun K. ; Silvernail, Jodi L. ; Strickland, Tammy ; Nesbitt, Jarred J. ; Lim, Kelly ; Schwarzbauer, Jean E. ; Schwartz, Jeffrey ; Yaszemski, Michael J. ; Windebank, Anthony J. ; Madigan, Nicolas N.</creator><creatorcontrib>Siddiqui, Ahad M. ; Thiele, Frederic ; Stewart, Rachel N. ; Rangnick, Simone ; Weiss, Georgina J. ; Chen, Bingkun K. ; Silvernail, Jodi L. ; Strickland, Tammy ; Nesbitt, Jarred J. ; Lim, Kelly ; Schwarzbauer, Jean E. ; Schwartz, Jeffrey ; Yaszemski, Michael J. ; Windebank, Anthony J. ; Madigan, Nicolas N.</creatorcontrib><description>The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms241210250</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Axons ; Biomaterials ; Biomedical materials ; Cell number ; Cells ; Design ; Extracellular matrix ; Fibronectin ; Hydrogels ; Immune system ; Inflammation ; Laminin ; Limbs ; Microglia ; Neural prostheses ; Pattern formation ; Patterning ; Phosphonates ; Polyethylene glycol ; Prosthetics ; Regeneration ; Scaffolds ; Self-assembled monolayers ; Self-assembly ; Spinal cord injuries ; Surface chemistry ; Surgical implants ; Titanium dioxide ; Topography</subject><ispartof>International journal of molecular sciences, 2023-06, Vol.24 (12), p.10250</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</citedby><cites>FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</cites><orcidid>0000-0001-7293-0205 ; 0000-0003-4185-446X ; 0000-0003-1012-7593 ; 0000-0003-3652-7456 ; 0000-0003-3334-1728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829834614/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829834614?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Siddiqui, Ahad M.</creatorcontrib><creatorcontrib>Thiele, Frederic</creatorcontrib><creatorcontrib>Stewart, Rachel N.</creatorcontrib><creatorcontrib>Rangnick, Simone</creatorcontrib><creatorcontrib>Weiss, Georgina J.</creatorcontrib><creatorcontrib>Chen, Bingkun K.</creatorcontrib><creatorcontrib>Silvernail, Jodi L.</creatorcontrib><creatorcontrib>Strickland, Tammy</creatorcontrib><creatorcontrib>Nesbitt, Jarred J.</creatorcontrib><creatorcontrib>Lim, Kelly</creatorcontrib><creatorcontrib>Schwarzbauer, Jean E.</creatorcontrib><creatorcontrib>Schwartz, Jeffrey</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Windebank, Anthony J.</creatorcontrib><creatorcontrib>Madigan, Nicolas N.</creatorcontrib><title>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</title><title>International journal of molecular sciences</title><description>The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.</description><subject>Axons</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell number</subject><subject>Cells</subject><subject>Design</subject><subject>Extracellular matrix</subject><subject>Fibronectin</subject><subject>Hydrogels</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Laminin</subject><subject>Limbs</subject><subject>Microglia</subject><subject>Neural prostheses</subject><subject>Pattern formation</subject><subject>Patterning</subject><subject>Phosphonates</subject><subject>Polyethylene glycol</subject><subject>Prosthetics</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Spinal cord injuries</subject><subject>Surface chemistry</subject><subject>Surgical implants</subject><subject>Titanium dioxide</subject><subject>Topography</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUU1r3DAQNaGFpGmPvQt66cWpvvyhUwlL0wRSNmTTs5GlsVeLrHElO8U_Jv-1XhJK09M8mDfvzczLso-MXgih6Bd3GBKXjDPKC3qSnTHJeU5pWb35B59m71I6UMoFL9RZ9rQdIeS7URuw5N7Zfi3Xi43Ygyc7o7sOvU1kg2HSLrjQkwe35fkOfJdfpgRD69eJHxjQ6wUiwY7c7TGNewx6gkTuIg44AbmHHgJEPTkMRIfVCww-QlzIFXqPv4_Ku9EF7VevaMlNOMxxeZ-97bRP8OGlnmc_r749bK7z2-33m83lbW6EElOudCWlsLaiSjO7Ykt1wcqiqpmuDJcgRSFqJVnRmbaAlhvgrSw6MDUXWnNxnn191h3ndgBrIExR-2aMbtBxaVC75nUnuH3T42OzvloppqpV4fOLQsRfM6SpGVwy4L0OgHNqeC1oWUpBj2af_qMecI7r5UcWV7WQJZMrK39mmYgpRej-bsNoc4y7eRW3-AMeDaD7</recordid><startdate>20230616</startdate><enddate>20230616</enddate><creator>Siddiqui, Ahad M.</creator><creator>Thiele, Frederic</creator><creator>Stewart, Rachel N.</creator><creator>Rangnick, Simone</creator><creator>Weiss, Georgina J.</creator><creator>Chen, Bingkun K.</creator><creator>Silvernail, Jodi L.</creator><creator>Strickland, Tammy</creator><creator>Nesbitt, Jarred J.</creator><creator>Lim, Kelly</creator><creator>Schwarzbauer, Jean E.</creator><creator>Schwartz, Jeffrey</creator><creator>Yaszemski, Michael J.</creator><creator>Windebank, Anthony J.</creator><creator>Madigan, Nicolas N.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7293-0205</orcidid><orcidid>https://orcid.org/0000-0003-4185-446X</orcidid><orcidid>https://orcid.org/0000-0003-1012-7593</orcidid><orcidid>https://orcid.org/0000-0003-3652-7456</orcidid><orcidid>https://orcid.org/0000-0003-3334-1728</orcidid></search><sort><creationdate>20230616</creationdate><title>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</title><author>Siddiqui, Ahad M. ; Thiele, Frederic ; Stewart, Rachel N. ; Rangnick, Simone ; Weiss, Georgina J. ; Chen, Bingkun K. ; Silvernail, Jodi L. ; Strickland, Tammy ; Nesbitt, Jarred J. ; Lim, Kelly ; Schwarzbauer, Jean E. ; Schwartz, Jeffrey ; Yaszemski, Michael J. ; Windebank, Anthony J. ; Madigan, Nicolas N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axons</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell number</topic><topic>Cells</topic><topic>Design</topic><topic>Extracellular matrix</topic><topic>Fibronectin</topic><topic>Hydrogels</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Laminin</topic><topic>Limbs</topic><topic>Microglia</topic><topic>Neural prostheses</topic><topic>Pattern formation</topic><topic>Patterning</topic><topic>Phosphonates</topic><topic>Polyethylene glycol</topic><topic>Prosthetics</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Spinal cord injuries</topic><topic>Surface chemistry</topic><topic>Surgical implants</topic><topic>Titanium dioxide</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, Ahad M.</creatorcontrib><creatorcontrib>Thiele, Frederic</creatorcontrib><creatorcontrib>Stewart, Rachel N.</creatorcontrib><creatorcontrib>Rangnick, Simone</creatorcontrib><creatorcontrib>Weiss, Georgina J.</creatorcontrib><creatorcontrib>Chen, Bingkun K.</creatorcontrib><creatorcontrib>Silvernail, Jodi L.</creatorcontrib><creatorcontrib>Strickland, Tammy</creatorcontrib><creatorcontrib>Nesbitt, Jarred J.</creatorcontrib><creatorcontrib>Lim, Kelly</creatorcontrib><creatorcontrib>Schwarzbauer, Jean E.</creatorcontrib><creatorcontrib>Schwartz, Jeffrey</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Windebank, Anthony J.</creatorcontrib><creatorcontrib>Madigan, Nicolas N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqui, Ahad M.</au><au>Thiele, Frederic</au><au>Stewart, Rachel N.</au><au>Rangnick, Simone</au><au>Weiss, Georgina J.</au><au>Chen, Bingkun K.</au><au>Silvernail, Jodi L.</au><au>Strickland, Tammy</au><au>Nesbitt, Jarred J.</au><au>Lim, Kelly</au><au>Schwarzbauer, Jean E.</au><au>Schwartz, Jeffrey</au><au>Yaszemski, Michael J.</au><au>Windebank, Anthony J.</au><au>Madigan, Nicolas N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury</atitle><jtitle>International journal of molecular sciences</jtitle><date>2023-06-16</date><risdate>2023</risdate><volume>24</volume><issue>12</issue><spage>10250</spage><pages>10250-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijms241210250</doi><orcidid>https://orcid.org/0000-0001-7293-0205</orcidid><orcidid>https://orcid.org/0000-0003-4185-446X</orcidid><orcidid>https://orcid.org/0000-0003-1012-7593</orcidid><orcidid>https://orcid.org/0000-0003-3652-7456</orcidid><orcidid>https://orcid.org/0000-0003-3334-1728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-06, Vol.24 (12), p.10250
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299197
source Publicly Available Content Database; PubMed Central
subjects Axons
Biomaterials
Biomedical materials
Cell number
Cells
Design
Extracellular matrix
Fibronectin
Hydrogels
Immune system
Inflammation
Laminin
Limbs
Microglia
Neural prostheses
Pattern formation
Patterning
Phosphonates
Polyethylene glycol
Prosthetics
Regeneration
Scaffolds
Self-assembled monolayers
Self-assembly
Spinal cord injuries
Surface chemistry
Surgical implants
Titanium dioxide
Topography
title Open-Spaced Ridged Hydrogel Scaffolds Containing TiO2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-Spaced%20Ridged%20Hydrogel%20Scaffolds%20Containing%20TiO2-Self-Assembled%20Monolayer%20of%20Phosphonates%20Promote%20Regeneration%20and%20Recovery%20Following%20Spinal%20Cord%20Injury&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Siddiqui,%20Ahad%20M.&rft.date=2023-06-16&rft.volume=24&rft.issue=12&rft.spage=10250&rft.pages=10250-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms241210250&rft_dat=%3Cproquest_pubme%3E2829834614%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-9a7443dd709a1d744d0a5165781a7c24e435389415fcb5eb2ce2b45fec823aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829834614&rft_id=info:pmid/&rfr_iscdi=true