Loading…
Investigating the Influence of Mg Content Variations on Microstructures, Heat-Treatment, and Mechanical Properties of Al-Cu-Mg Alloys
The objective of this study was to examine the impact of varying magnesium levels in the α-Al + S + T region of the Al-Cu-Mg ternary phase diagram on the solidification process, microstructure development, tensile properties, and precipitation hardening of Al-Cu-Mg-Ti alloys. The outcomes indicate t...
Saved in:
Published in: | Materials 2023-06, Vol.16 (12), p.4384 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study was to examine the impact of varying magnesium levels in the α-Al + S + T region of the Al-Cu-Mg ternary phase diagram on the solidification process, microstructure development, tensile properties, and precipitation hardening of Al-Cu-Mg-Ti alloys. The outcomes indicate that alloys with 3% and 5% Mg solidified with the formation of binary eutectic α-Al-Al
CuMg (S) phases, whereas in the alloy with 7% Mg, the solidification process ended with the formation of eutectic α-Al-Mg
(Al, Cu)
(T) phases. Additionally, a significant number of T precipitates were noticed inside the granular α-Al grains in all alloys. In the as-cast condition, the 5% Mg-added alloy showed the best combination of yield strength (153 MPa) and elongation (2.5%). Upon T6 heat treatment, both tensile strength and elongation increased. The 7% Mg-added alloy had the best results, with a yield strength of 193 MPa and an elongation of 3.4%. DSC analysis revealed that the increased tensile strength observed after the aging treatment was associated with the formation of solute clusters and S″/S' phases. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16124384 |