Loading…
Angiotensin-Converting Enzyme and Hypertension: A Systemic Analysis of Various ACE Inhibitors, Their Side Effects, and Bioactive Peptides as a Putative Therapy for Hypertension
Hypertension is a major risk factor for heart attack, produce atherosclerosis (hardening of the arteries), congestive heart failure, stroke, kidney infection, blindness, end-stage renal infection, and cardiovascular diseases. Many mechanisms are involved in causing hypertension, i.e., via calcium ch...
Saved in:
Published in: | Journal of the Renin-Angiotensin-Aldosterone System 2023-01, Vol.2023, p.7890188-7890188 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hypertension is a major risk factor for heart attack, produce atherosclerosis (hardening of the arteries), congestive heart failure, stroke, kidney infection, blindness, end-stage renal infection, and cardiovascular diseases. Many mechanisms are involved in causing hypertension, i.e., via calcium channels, alpha and beta receptors, and the renin-angiotensin system (RAS). RAS has an important role in blood pressure control and is also involved in the metabolism of glucose, homeostasis, and balance of electrolytes in the body. The components of RAS that are involved in the regulation of blood pressure are angiotensinogen, Ang I (angiotensin I), Ang II (angiotensin II), ACE (angiotensin-converting enzyme), and ACE 2 (angiotensin-converting enzyme 2). These components provide for relevant therapeutic targets for the treatment of hypertension, and various drugs are commercially available that target individual components of RAS. Angiotensin receptor blockers (ARBs) and ACE inhibitors are the most popular among these drugs. ACE is chosen in this review as it makes an important target for blood pressure control because it converts Ang I into Ang II and also acts on the vasodilator, bradykinin, to degrade it into inactive peptides. This review highlights various aspects of blood pressure regulation in the body with a focus on ACE, drugs targeting the components involved in regulation, their associated side effects, and a need to shift to alternative therapy for putative hypertension treatment in the form of bioactive peptides from food. |
---|---|
ISSN: | 1470-3203 1752-8976 |
DOI: | 10.1155/2023/7890188 |