Loading…

Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation

Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2023-06, Vol.39 (25), p.8589-8602
Main Authors: Recupido, Federica, Petala, Maria, Caserta, Sergio, Marra, Daniele, Kostoglou, Margaritis, Karapantsios, Thodoris D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge′s equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.3c00179