Loading…

Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation

Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2023-06, Vol.39 (25), p.8589-8602
Main Authors: Recupido, Federica, Petala, Maria, Caserta, Sergio, Marra, Daniele, Kostoglou, Margaritis, Karapantsios, Thodoris D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a450t-c875db8d61c7b38925e1176dfd6bcabbdfac911ec6f5cf0f139bd74f6717ebd43
cites cdi_FETCH-LOGICAL-a450t-c875db8d61c7b38925e1176dfd6bcabbdfac911ec6f5cf0f139bd74f6717ebd43
container_end_page 8602
container_issue 25
container_start_page 8589
container_title Langmuir
container_volume 39
creator Recupido, Federica
Petala, Maria
Caserta, Sergio
Marra, Daniele
Kostoglou, Margaritis
Karapantsios, Thodoris D.
description Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge′s equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.
doi_str_mv 10.1021/acs.langmuir.3c00179
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10308807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805029652</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-c875db8d61c7b38925e1176dfd6bcabbdfac911ec6f5cf0f139bd74f6717ebd43</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0Eape2b4BQjlyyjOMkjk8VtAtUWgkOoB4txx4vrrL21naq8vb1arcVXDj5MN__jzUfIe8oLCk09KPSaTkpv9nOLi6ZBqBcvCIL2jVQd0PDX5MF8JbVvO3ZKXmb0h0ACNaKE3LKOHAxCL4gv76EqNFUt5iz85vqRww7jNlhqoKtPiudMTpVr5VBX12X4YQ5VavHAjn0eh-58S47NVWrB7ULUWUX_Dl5Y9WU8OL4npU9q59X3-r19683V5_WtWo7yLUeeGfGwfRU85ENoumQUt4ba_pRq3E0VmlBKeredtqCpUyMhre255TjaFp2Ri4Pvbt53KLR6HNUk9xFt1XxjwzKyX8n3v2Wm_AgKTAYBuCl4cOxIYb7GVOWW5c0TuWyGOYkmwE6aETfNQVtD6iOIaWI9mUPBblXIosS-axEHpWU2Pu___gSenZQADgA-_hdmKMvJ_t_5xMQwp7_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805029652</pqid></control><display><type>article</type><title>Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Recupido, Federica ; Petala, Maria ; Caserta, Sergio ; Marra, Daniele ; Kostoglou, Margaritis ; Karapantsios, Thodoris D.</creator><creatorcontrib>Recupido, Federica ; Petala, Maria ; Caserta, Sergio ; Marra, Daniele ; Kostoglou, Margaritis ; Karapantsios, Thodoris D.</creatorcontrib><description>Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge′s equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c00179</identifier><identifier>PMID: 37079897</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria ; Biofilms ; Hydrophobic and Hydrophilic Interactions ; Volatilization ; Wettability</subject><ispartof>Langmuir, 2023-06, Vol.39 (25), p.8589-8602</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-c875db8d61c7b38925e1176dfd6bcabbdfac911ec6f5cf0f139bd74f6717ebd43</citedby><cites>FETCH-LOGICAL-a450t-c875db8d61c7b38925e1176dfd6bcabbdfac911ec6f5cf0f139bd74f6717ebd43</cites><orcidid>0000-0001-6641-3359 ; 0000-0001-7955-0002 ; 0000-0002-4400-0059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37079897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Recupido, Federica</creatorcontrib><creatorcontrib>Petala, Maria</creatorcontrib><creatorcontrib>Caserta, Sergio</creatorcontrib><creatorcontrib>Marra, Daniele</creatorcontrib><creatorcontrib>Kostoglou, Margaritis</creatorcontrib><creatorcontrib>Karapantsios, Thodoris D.</creatorcontrib><title>Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge′s equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.</description><subject>Bacteria</subject><subject>Biofilms</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Volatilization</subject><subject>Wettability</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0Eape2b4BQjlyyjOMkjk8VtAtUWgkOoB4txx4vrrL21naq8vb1arcVXDj5MN__jzUfIe8oLCk09KPSaTkpv9nOLi6ZBqBcvCIL2jVQd0PDX5MF8JbVvO3ZKXmb0h0ACNaKE3LKOHAxCL4gv76EqNFUt5iz85vqRww7jNlhqoKtPiudMTpVr5VBX12X4YQ5VavHAjn0eh-58S47NVWrB7ULUWUX_Dl5Y9WU8OL4npU9q59X3-r19683V5_WtWo7yLUeeGfGwfRU85ENoumQUt4ba_pRq3E0VmlBKeredtqCpUyMhre255TjaFp2Ri4Pvbt53KLR6HNUk9xFt1XxjwzKyX8n3v2Wm_AgKTAYBuCl4cOxIYb7GVOWW5c0TuWyGOYkmwE6aETfNQVtD6iOIaWI9mUPBblXIosS-axEHpWU2Pu___gSenZQADgA-_hdmKMvJ_t_5xMQwp7_</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Recupido, Federica</creator><creator>Petala, Maria</creator><creator>Caserta, Sergio</creator><creator>Marra, Daniele</creator><creator>Kostoglou, Margaritis</creator><creator>Karapantsios, Thodoris D.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6641-3359</orcidid><orcidid>https://orcid.org/0000-0001-7955-0002</orcidid><orcidid>https://orcid.org/0000-0002-4400-0059</orcidid></search><sort><creationdate>20230627</creationdate><title>Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation</title><author>Recupido, Federica ; Petala, Maria ; Caserta, Sergio ; Marra, Daniele ; Kostoglou, Margaritis ; Karapantsios, Thodoris D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-c875db8d61c7b38925e1176dfd6bcabbdfac911ec6f5cf0f139bd74f6717ebd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bacteria</topic><topic>Biofilms</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Volatilization</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Recupido, Federica</creatorcontrib><creatorcontrib>Petala, Maria</creatorcontrib><creatorcontrib>Caserta, Sergio</creatorcontrib><creatorcontrib>Marra, Daniele</creatorcontrib><creatorcontrib>Kostoglou, Margaritis</creatorcontrib><creatorcontrib>Karapantsios, Thodoris D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Recupido, Federica</au><au>Petala, Maria</au><au>Caserta, Sergio</au><au>Marra, Daniele</au><au>Kostoglou, Margaritis</au><au>Karapantsios, Thodoris D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2023-06-27</date><risdate>2023</risdate><volume>39</volume><issue>25</issue><spage>8589</spage><epage>8602</epage><pages>8589-8602</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge′s equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37079897</pmid><doi>10.1021/acs.langmuir.3c00179</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6641-3359</orcidid><orcidid>https://orcid.org/0000-0001-7955-0002</orcidid><orcidid>https://orcid.org/0000-0002-4400-0059</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2023-06, Vol.39 (25), p.8589-8602
issn 0743-7463
1520-5827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10308807
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bacteria
Biofilms
Hydrophobic and Hydrophilic Interactions
Volatilization
Wettability
title Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20Wetting%20Properties%20of%20Bacteria-Laden%20Droplets%20Experiencing%20Initial%20Evaporation&rft.jtitle=Langmuir&rft.au=Recupido,%20Federica&rft.date=2023-06-27&rft.volume=39&rft.issue=25&rft.spage=8589&rft.epage=8602&rft.pages=8589-8602&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c00179&rft_dat=%3Cproquest_pubme%3E2805029652%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a450t-c875db8d61c7b38925e1176dfd6bcabbdfac911ec6f5cf0f139bd74f6717ebd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805029652&rft_id=info:pmid/37079897&rfr_iscdi=true