Loading…
Optimal adjustment sets for causal query estimation in partially observed biomolecular networks
Abstract Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observe...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2023-06, Vol.39 (Supplement_1), p.i494-i503 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53 |
container_end_page | i503 |
container_issue | Supplement_1 |
container_start_page | i494 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 39 |
creator | Mohammad-Taheri, Sara Tewari, Vartika Kapre, Rohan Rahiminasab, Ehsan Sachs, Karen Tapley Hoyt, Charles Zucker, Jeremy Vitek, Olga |
description | Abstract
Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet. |
doi_str_mv | 10.1093/bioinformatics/btad270 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btad270</oup_id><sourcerecordid>2832576579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53</originalsourceid><addsrcrecordid>eNqNUcFu1DAQtRCIlsIvVBYnLtvacRLbJ4QqoEiVeoGzNfZOqItjB9tptX-Pq11W9MZpRpo3b96bR8g5ZxecaXFpffJxSnmG6l25tBW2nWQvyCkXo9z0ivOXx56JE_KmlHvG2MCG8TU5EVIoyaU-JeZ2qX6GQGF7v5Y6Y6y0YC20cVMHa2mj3yvmHcXyBKw-ReojXSBXDyHsaLIF8wNuaZM0p4BuDZBpxPqY8q_ylryaIBR8d6hn5MeXz9-vrjc3t1-_XX262bhe8Lpx3PZTby3CAJ1FzWCSmmnegwKtgSshLSimnXPomBIKO8XHzgKMWo52EGfk4553We2MW9d8ZAhmyU1z3pkE3jyfRH9nfqYHw5ngXPCxMbzfM6Rm1BTnK7o7l2JEVw3XSrafNdCHw5mc2ltKNbMvDkOAiGktplOiG-Q4SN2g4x7qciol43QUw5l5ytA8z9AcMmyL5_9aOa79Da0B-EHpuvwv6R_5aLNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832576579</pqid></control><display><type>article</type><title>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Mohammad-Taheri, Sara ; Tewari, Vartika ; Kapre, Rohan ; Rahiminasab, Ehsan ; Sachs, Karen ; Tapley Hoyt, Charles ; Zucker, Jeremy ; Vitek, Olga</creator><creatorcontrib>Mohammad-Taheri, Sara ; Tewari, Vartika ; Kapre, Rohan ; Rahiminasab, Ehsan ; Sachs, Karen ; Tapley Hoyt, Charles ; Zucker, Jeremy ; Vitek, Olga</creatorcontrib><description>Abstract
Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad270</identifier><identifier>PMID: 37387179</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; Computer Simulation ; Systems Biology and Networks</subject><ispartof>Bioinformatics (Oxford, England), 2023-06, Vol.39 (Supplement_1), p.i494-i503</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311316/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311316/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37387179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1987738$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammad-Taheri, Sara</creatorcontrib><creatorcontrib>Tewari, Vartika</creatorcontrib><creatorcontrib>Kapre, Rohan</creatorcontrib><creatorcontrib>Rahiminasab, Ehsan</creatorcontrib><creatorcontrib>Sachs, Karen</creatorcontrib><creatorcontrib>Tapley Hoyt, Charles</creatorcontrib><creatorcontrib>Zucker, Jeremy</creatorcontrib><creatorcontrib>Vitek, Olga</creatorcontrib><title>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet.</description><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Systems Biology and Networks</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNUcFu1DAQtRCIlsIvVBYnLtvacRLbJ4QqoEiVeoGzNfZOqItjB9tptX-Pq11W9MZpRpo3b96bR8g5ZxecaXFpffJxSnmG6l25tBW2nWQvyCkXo9z0ivOXx56JE_KmlHvG2MCG8TU5EVIoyaU-JeZ2qX6GQGF7v5Y6Y6y0YC20cVMHa2mj3yvmHcXyBKw-ReojXSBXDyHsaLIF8wNuaZM0p4BuDZBpxPqY8q_ylryaIBR8d6hn5MeXz9-vrjc3t1-_XX262bhe8Lpx3PZTby3CAJ1FzWCSmmnegwKtgSshLSimnXPomBIKO8XHzgKMWo52EGfk4553We2MW9d8ZAhmyU1z3pkE3jyfRH9nfqYHw5ngXPCxMbzfM6Rm1BTnK7o7l2JEVw3XSrafNdCHw5mc2ltKNbMvDkOAiGktplOiG-Q4SN2g4x7qciol43QUw5l5ytA8z9AcMmyL5_9aOa79Da0B-EHpuvwv6R_5aLNw</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Mohammad-Taheri, Sara</creator><creator>Tewari, Vartika</creator><creator>Kapre, Rohan</creator><creator>Rahiminasab, Ehsan</creator><creator>Sachs, Karen</creator><creator>Tapley Hoyt, Charles</creator><creator>Zucker, Jeremy</creator><creator>Vitek, Olga</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20230630</creationdate><title>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</title><author>Mohammad-Taheri, Sara ; Tewari, Vartika ; Kapre, Rohan ; Rahiminasab, Ehsan ; Sachs, Karen ; Tapley Hoyt, Charles ; Zucker, Jeremy ; Vitek, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Systems Biology and Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammad-Taheri, Sara</creatorcontrib><creatorcontrib>Tewari, Vartika</creatorcontrib><creatorcontrib>Kapre, Rohan</creatorcontrib><creatorcontrib>Rahiminasab, Ehsan</creatorcontrib><creatorcontrib>Sachs, Karen</creatorcontrib><creatorcontrib>Tapley Hoyt, Charles</creatorcontrib><creatorcontrib>Zucker, Jeremy</creatorcontrib><creatorcontrib>Vitek, Olga</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad-Taheri, Sara</au><au>Tewari, Vartika</au><au>Kapre, Rohan</au><au>Rahiminasab, Ehsan</au><au>Sachs, Karen</au><au>Tapley Hoyt, Charles</au><au>Zucker, Jeremy</au><au>Vitek, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-06-30</date><risdate>2023</risdate><volume>39</volume><issue>Supplement_1</issue><spage>i494</spage><epage>i503</epage><pages>i494-i503</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Abstract
Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37387179</pmid><doi>10.1093/bioinformatics/btad270</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2023-06, Vol.39 (Supplement_1), p.i494-i503 |
issn | 1367-4803 1367-4811 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311316 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | Computational Biology Computer Simulation Systems Biology and Networks |
title | Optimal adjustment sets for causal query estimation in partially observed biomolecular networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20adjustment%20sets%20for%20causal%20query%20estimation%20in%20partially%20observed%20biomolecular%20networks&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Mohammad-Taheri,%20Sara&rft.date=2023-06-30&rft.volume=39&rft.issue=Supplement_1&rft.spage=i494&rft.epage=i503&rft.pages=i494-i503&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad270&rft_dat=%3Cproquest_pubme%3E2832576579%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832576579&rft_id=info:pmid/37387179&rft_oup_id=10.1093/bioinformatics/btad270&rfr_iscdi=true |