Loading…

Optimal adjustment sets for causal query estimation in partially observed biomolecular networks

Abstract Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observe...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2023-06, Vol.39 (Supplement_1), p.i494-i503
Main Authors: Mohammad-Taheri, Sara, Tewari, Vartika, Kapre, Rohan, Rahiminasab, Ehsan, Sachs, Karen, Tapley Hoyt, Charles, Zucker, Jeremy, Vitek, Olga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53
container_end_page i503
container_issue Supplement_1
container_start_page i494
container_title Bioinformatics (Oxford, England)
container_volume 39
creator Mohammad-Taheri, Sara
Tewari, Vartika
Kapre, Rohan
Rahiminasab, Ehsan
Sachs, Karen
Tapley Hoyt, Charles
Zucker, Jeremy
Vitek, Olga
description Abstract Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet.
doi_str_mv 10.1093/bioinformatics/btad270
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btad270</oup_id><sourcerecordid>2832576579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53</originalsourceid><addsrcrecordid>eNqNUcFu1DAQtRCIlsIvVBYnLtvacRLbJ4QqoEiVeoGzNfZOqItjB9tptX-Pq11W9MZpRpo3b96bR8g5ZxecaXFpffJxSnmG6l25tBW2nWQvyCkXo9z0ivOXx56JE_KmlHvG2MCG8TU5EVIoyaU-JeZ2qX6GQGF7v5Y6Y6y0YC20cVMHa2mj3yvmHcXyBKw-ReojXSBXDyHsaLIF8wNuaZM0p4BuDZBpxPqY8q_ylryaIBR8d6hn5MeXz9-vrjc3t1-_XX262bhe8Lpx3PZTby3CAJ1FzWCSmmnegwKtgSshLSimnXPomBIKO8XHzgKMWo52EGfk4553We2MW9d8ZAhmyU1z3pkE3jyfRH9nfqYHw5ngXPCxMbzfM6Rm1BTnK7o7l2JEVw3XSrafNdCHw5mc2ltKNbMvDkOAiGktplOiG-Q4SN2g4x7qciol43QUw5l5ytA8z9AcMmyL5_9aOa79Da0B-EHpuvwv6R_5aLNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832576579</pqid></control><display><type>article</type><title>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Mohammad-Taheri, Sara ; Tewari, Vartika ; Kapre, Rohan ; Rahiminasab, Ehsan ; Sachs, Karen ; Tapley Hoyt, Charles ; Zucker, Jeremy ; Vitek, Olga</creator><creatorcontrib>Mohammad-Taheri, Sara ; Tewari, Vartika ; Kapre, Rohan ; Rahiminasab, Ehsan ; Sachs, Karen ; Tapley Hoyt, Charles ; Zucker, Jeremy ; Vitek, Olga</creatorcontrib><description>Abstract Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad270</identifier><identifier>PMID: 37387179</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; Computer Simulation ; Systems Biology and Networks</subject><ispartof>Bioinformatics (Oxford, England), 2023-06, Vol.39 (Supplement_1), p.i494-i503</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311316/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311316/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37387179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1987738$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammad-Taheri, Sara</creatorcontrib><creatorcontrib>Tewari, Vartika</creatorcontrib><creatorcontrib>Kapre, Rohan</creatorcontrib><creatorcontrib>Rahiminasab, Ehsan</creatorcontrib><creatorcontrib>Sachs, Karen</creatorcontrib><creatorcontrib>Tapley Hoyt, Charles</creatorcontrib><creatorcontrib>Zucker, Jeremy</creatorcontrib><creatorcontrib>Vitek, Olga</creatorcontrib><title>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet.</description><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Systems Biology and Networks</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNUcFu1DAQtRCIlsIvVBYnLtvacRLbJ4QqoEiVeoGzNfZOqItjB9tptX-Pq11W9MZpRpo3b96bR8g5ZxecaXFpffJxSnmG6l25tBW2nWQvyCkXo9z0ivOXx56JE_KmlHvG2MCG8TU5EVIoyaU-JeZ2qX6GQGF7v5Y6Y6y0YC20cVMHa2mj3yvmHcXyBKw-ReojXSBXDyHsaLIF8wNuaZM0p4BuDZBpxPqY8q_ylryaIBR8d6hn5MeXz9-vrjc3t1-_XX262bhe8Lpx3PZTby3CAJ1FzWCSmmnegwKtgSshLSimnXPomBIKO8XHzgKMWo52EGfk4553We2MW9d8ZAhmyU1z3pkE3jyfRH9nfqYHw5ngXPCxMbzfM6Rm1BTnK7o7l2JEVw3XSrafNdCHw5mc2ltKNbMvDkOAiGktplOiG-Q4SN2g4x7qciol43QUw5l5ytA8z9AcMmyL5_9aOa79Da0B-EHpuvwv6R_5aLNw</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Mohammad-Taheri, Sara</creator><creator>Tewari, Vartika</creator><creator>Kapre, Rohan</creator><creator>Rahiminasab, Ehsan</creator><creator>Sachs, Karen</creator><creator>Tapley Hoyt, Charles</creator><creator>Zucker, Jeremy</creator><creator>Vitek, Olga</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20230630</creationdate><title>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</title><author>Mohammad-Taheri, Sara ; Tewari, Vartika ; Kapre, Rohan ; Rahiminasab, Ehsan ; Sachs, Karen ; Tapley Hoyt, Charles ; Zucker, Jeremy ; Vitek, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Systems Biology and Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammad-Taheri, Sara</creatorcontrib><creatorcontrib>Tewari, Vartika</creatorcontrib><creatorcontrib>Kapre, Rohan</creatorcontrib><creatorcontrib>Rahiminasab, Ehsan</creatorcontrib><creatorcontrib>Sachs, Karen</creatorcontrib><creatorcontrib>Tapley Hoyt, Charles</creatorcontrib><creatorcontrib>Zucker, Jeremy</creatorcontrib><creatorcontrib>Vitek, Olga</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad-Taheri, Sara</au><au>Tewari, Vartika</au><au>Kapre, Rohan</au><au>Rahiminasab, Ehsan</au><au>Sachs, Karen</au><au>Tapley Hoyt, Charles</au><au>Zucker, Jeremy</au><au>Vitek, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal adjustment sets for causal query estimation in partially observed biomolecular networks</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-06-30</date><risdate>2023</risdate><volume>39</volume><issue>Supplement_1</issue><spage>i494</spage><epage>i503</epage><pages>i494-i503</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Abstract Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, current methods use graph-based criteria to find an adjustment set that minimizes asymptotic variance. Unfortunately, many models that share the same graph topology, and therefore same functional dependencies, may differ in the processes that generate the observational data. In these cases, the topology-based criteria fail to distinguish the variances of the adjustment sets. This deficiency can lead to sub-optimal adjustment sets, and to miss-characterization of the effect of the intervention. We propose an approach for deriving ‘optimal adjustment sets’ that takes into account the nature of the data, bias and finite-sample variance of the estimator, and cost. It empirically learns the data generating processes from historical experimental data, and characterizes the properties of the estimators by simulation. We demonstrate the utility of the proposed approach in four biomolecular Case studies with different topologies and different data generation processes. The implementation and reproducible Case studies are at https://github.com/srtaheri/OptimalAdjustmentSet.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37387179</pmid><doi>10.1093/bioinformatics/btad270</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2023-06, Vol.39 (Supplement_1), p.i494-i503
issn 1367-4803
1367-4811
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311316
source Oxford Journals Open Access Collection; PubMed Central
subjects Computational Biology
Computer Simulation
Systems Biology and Networks
title Optimal adjustment sets for causal query estimation in partially observed biomolecular networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20adjustment%20sets%20for%20causal%20query%20estimation%20in%20partially%20observed%20biomolecular%20networks&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Mohammad-Taheri,%20Sara&rft.date=2023-06-30&rft.volume=39&rft.issue=Supplement_1&rft.spage=i494&rft.epage=i503&rft.pages=i494-i503&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad270&rft_dat=%3Cproquest_pubme%3E2832576579%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-c1b4f4bbea5a2be90af790914a8a99a1837ba809cccec0838e28162baa6976b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832576579&rft_id=info:pmid/37387179&rft_oup_id=10.1093/bioinformatics/btad270&rfr_iscdi=true