Loading…
Organometallic Pillarplexes That Bind DNA 4‑Way Holliday Junctions and Forks
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display...
Saved in:
Published in: | Journal of the American Chemical Society 2023-06, Vol.145 (25), p.13570-13580 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a418t-827ee3e90c128387d322d74c1b7d00a9223eb512ecb911b2a5d2e57f580afdd83 |
---|---|
cites | cdi_FETCH-LOGICAL-a418t-827ee3e90c128387d322d74c1b7d00a9223eb512ecb911b2a5d2e57f580afdd83 |
container_end_page | 13580 |
container_issue | 25 |
container_start_page | 13570 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Craig, James S. Melidis, Larry Williams, Hugo D. Dettmer, Samuel J. Heidecker, Alexandra A. Altmann, Philipp J. Guan, Shengyang Campbell, Callum Browning, Douglas F. Sigel, Roland K. O. Johannsen, Silke Egan, Ross T. Aikman, Brech Casini, Angela Pöthig, Alexander Hannon, Michael J. |
description | Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes’ ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry. |
doi_str_mv | 10.1021/jacs.3c00118 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827256715</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-827ee3e90c128387d322d74c1b7d00a9223eb512ecb911b2a5d2e57f580afdd83</originalsourceid><addsrcrecordid>eNptkbtOwzAUhi0EouWyMaOMDKT42HHjTAgKpSAEDCBGy7EdmpLGxU4Q3XgFXpEnwRXlJjH5WOc7_7n8CO0A7gEmcDCRyveowhiAr6AuMIJjBqS_iroYYxKnvE87aMP7SfgmhMM66tCUAueUddHVtXuQtZ2aRlZVqaKbsqqkm1Xmxfjodiyb6LisdXRydRQl769v93IejWwgdQgu2lo1pa19JAMytO7Rb6G1QlbebC_fTXQ3PL0djOLL67PzwdFlLBPgTcxJagw1GVZAOOWppoToNFGQpxpjmRFCTR6WMCrPAHIimSaGpQXjWBZac7qJDj91Z20-NVqZunGyEjNXTqWbCytL8TdTl2PxYJ8FYAqQsCwo7C0VnH1qjW_EtPTKhO1rY1svSJiRsH4KLKD7n6hy1ntniu8-gMXCA7HwQCw9CPju79m-4a-j_7ReVE1s6-pwqv-1PgBFJZCx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827256715</pqid></control><display><type>article</type><title>Organometallic Pillarplexes That Bind DNA 4‑Way Holliday Junctions and Forks</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Craig, James S. ; Melidis, Larry ; Williams, Hugo D. ; Dettmer, Samuel J. ; Heidecker, Alexandra A. ; Altmann, Philipp J. ; Guan, Shengyang ; Campbell, Callum ; Browning, Douglas F. ; Sigel, Roland K. O. ; Johannsen, Silke ; Egan, Ross T. ; Aikman, Brech ; Casini, Angela ; Pöthig, Alexander ; Hannon, Michael J.</creator><creatorcontrib>Craig, James S. ; Melidis, Larry ; Williams, Hugo D. ; Dettmer, Samuel J. ; Heidecker, Alexandra A. ; Altmann, Philipp J. ; Guan, Shengyang ; Campbell, Callum ; Browning, Douglas F. ; Sigel, Roland K. O. ; Johannsen, Silke ; Egan, Ross T. ; Aikman, Brech ; Casini, Angela ; Pöthig, Alexander ; Hannon, Michael J.</creatorcontrib><description>Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes’ ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c00118</identifier><identifier>PMID: 37318835</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-06, Vol.145 (25), p.13570-13580</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-827ee3e90c128387d322d74c1b7d00a9223eb512ecb911b2a5d2e57f580afdd83</citedby><cites>FETCH-LOGICAL-a418t-827ee3e90c128387d322d74c1b7d00a9223eb512ecb911b2a5d2e57f580afdd83</cites><orcidid>0000-0002-8833-7913 ; 0000-0001-7973-8996 ; 0000-0002-5797-6747 ; 0000-0003-1599-9542 ; 0000-0002-1307-7993 ; 0000-0003-4663-3949 ; 0000-0001-6853-2722 ; 0000-0002-0501-5020 ; 0000-0003-4672-3514 ; 0000-0001-8946-7421 ; 0000-0001-9262-976X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37318835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Craig, James S.</creatorcontrib><creatorcontrib>Melidis, Larry</creatorcontrib><creatorcontrib>Williams, Hugo D.</creatorcontrib><creatorcontrib>Dettmer, Samuel J.</creatorcontrib><creatorcontrib>Heidecker, Alexandra A.</creatorcontrib><creatorcontrib>Altmann, Philipp J.</creatorcontrib><creatorcontrib>Guan, Shengyang</creatorcontrib><creatorcontrib>Campbell, Callum</creatorcontrib><creatorcontrib>Browning, Douglas F.</creatorcontrib><creatorcontrib>Sigel, Roland K. O.</creatorcontrib><creatorcontrib>Johannsen, Silke</creatorcontrib><creatorcontrib>Egan, Ross T.</creatorcontrib><creatorcontrib>Aikman, Brech</creatorcontrib><creatorcontrib>Casini, Angela</creatorcontrib><creatorcontrib>Pöthig, Alexander</creatorcontrib><creatorcontrib>Hannon, Michael J.</creatorcontrib><title>Organometallic Pillarplexes That Bind DNA 4‑Way Holliday Junctions and Forks</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes’ ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkbtOwzAUhi0EouWyMaOMDKT42HHjTAgKpSAEDCBGy7EdmpLGxU4Q3XgFXpEnwRXlJjH5WOc7_7n8CO0A7gEmcDCRyveowhiAr6AuMIJjBqS_iroYYxKnvE87aMP7SfgmhMM66tCUAueUddHVtXuQtZ2aRlZVqaKbsqqkm1Xmxfjodiyb6LisdXRydRQl769v93IejWwgdQgu2lo1pa19JAMytO7Rb6G1QlbebC_fTXQ3PL0djOLL67PzwdFlLBPgTcxJagw1GVZAOOWppoToNFGQpxpjmRFCTR6WMCrPAHIimSaGpQXjWBZac7qJDj91Z20-NVqZunGyEjNXTqWbCytL8TdTl2PxYJ8FYAqQsCwo7C0VnH1qjW_EtPTKhO1rY1svSJiRsH4KLKD7n6hy1ntniu8-gMXCA7HwQCw9CPju79m-4a-j_7ReVE1s6-pwqv-1PgBFJZCx</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Craig, James S.</creator><creator>Melidis, Larry</creator><creator>Williams, Hugo D.</creator><creator>Dettmer, Samuel J.</creator><creator>Heidecker, Alexandra A.</creator><creator>Altmann, Philipp J.</creator><creator>Guan, Shengyang</creator><creator>Campbell, Callum</creator><creator>Browning, Douglas F.</creator><creator>Sigel, Roland K. O.</creator><creator>Johannsen, Silke</creator><creator>Egan, Ross T.</creator><creator>Aikman, Brech</creator><creator>Casini, Angela</creator><creator>Pöthig, Alexander</creator><creator>Hannon, Michael J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8833-7913</orcidid><orcidid>https://orcid.org/0000-0001-7973-8996</orcidid><orcidid>https://orcid.org/0000-0002-5797-6747</orcidid><orcidid>https://orcid.org/0000-0003-1599-9542</orcidid><orcidid>https://orcid.org/0000-0002-1307-7993</orcidid><orcidid>https://orcid.org/0000-0003-4663-3949</orcidid><orcidid>https://orcid.org/0000-0001-6853-2722</orcidid><orcidid>https://orcid.org/0000-0002-0501-5020</orcidid><orcidid>https://orcid.org/0000-0003-4672-3514</orcidid><orcidid>https://orcid.org/0000-0001-8946-7421</orcidid><orcidid>https://orcid.org/0000-0001-9262-976X</orcidid></search><sort><creationdate>20230628</creationdate><title>Organometallic Pillarplexes That Bind DNA 4‑Way Holliday Junctions and Forks</title><author>Craig, James S. ; Melidis, Larry ; Williams, Hugo D. ; Dettmer, Samuel J. ; Heidecker, Alexandra A. ; Altmann, Philipp J. ; Guan, Shengyang ; Campbell, Callum ; Browning, Douglas F. ; Sigel, Roland K. O. ; Johannsen, Silke ; Egan, Ross T. ; Aikman, Brech ; Casini, Angela ; Pöthig, Alexander ; Hannon, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-827ee3e90c128387d322d74c1b7d00a9223eb512ecb911b2a5d2e57f580afdd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craig, James S.</creatorcontrib><creatorcontrib>Melidis, Larry</creatorcontrib><creatorcontrib>Williams, Hugo D.</creatorcontrib><creatorcontrib>Dettmer, Samuel J.</creatorcontrib><creatorcontrib>Heidecker, Alexandra A.</creatorcontrib><creatorcontrib>Altmann, Philipp J.</creatorcontrib><creatorcontrib>Guan, Shengyang</creatorcontrib><creatorcontrib>Campbell, Callum</creatorcontrib><creatorcontrib>Browning, Douglas F.</creatorcontrib><creatorcontrib>Sigel, Roland K. O.</creatorcontrib><creatorcontrib>Johannsen, Silke</creatorcontrib><creatorcontrib>Egan, Ross T.</creatorcontrib><creatorcontrib>Aikman, Brech</creatorcontrib><creatorcontrib>Casini, Angela</creatorcontrib><creatorcontrib>Pöthig, Alexander</creatorcontrib><creatorcontrib>Hannon, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, James S.</au><au>Melidis, Larry</au><au>Williams, Hugo D.</au><au>Dettmer, Samuel J.</au><au>Heidecker, Alexandra A.</au><au>Altmann, Philipp J.</au><au>Guan, Shengyang</au><au>Campbell, Callum</au><au>Browning, Douglas F.</au><au>Sigel, Roland K. O.</au><au>Johannsen, Silke</au><au>Egan, Ross T.</au><au>Aikman, Brech</au><au>Casini, Angela</au><au>Pöthig, Alexander</au><au>Hannon, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organometallic Pillarplexes That Bind DNA 4‑Way Holliday Junctions and Forks</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>145</volume><issue>25</issue><spage>13570</spage><epage>13580</epage><pages>13570-13580</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes’ ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37318835</pmid><doi>10.1021/jacs.3c00118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8833-7913</orcidid><orcidid>https://orcid.org/0000-0001-7973-8996</orcidid><orcidid>https://orcid.org/0000-0002-5797-6747</orcidid><orcidid>https://orcid.org/0000-0003-1599-9542</orcidid><orcidid>https://orcid.org/0000-0002-1307-7993</orcidid><orcidid>https://orcid.org/0000-0003-4663-3949</orcidid><orcidid>https://orcid.org/0000-0001-6853-2722</orcidid><orcidid>https://orcid.org/0000-0002-0501-5020</orcidid><orcidid>https://orcid.org/0000-0003-4672-3514</orcidid><orcidid>https://orcid.org/0000-0001-8946-7421</orcidid><orcidid>https://orcid.org/0000-0001-9262-976X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-06, Vol.145 (25), p.13570-13580 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311459 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Organometallic Pillarplexes That Bind DNA 4‑Way Holliday Junctions and Forks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organometallic%20Pillarplexes%20That%20Bind%20DNA%204%E2%80%91Way%20Holliday%20Junctions%20and%20Forks&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Craig,%20James%20S.&rft.date=2023-06-28&rft.volume=145&rft.issue=25&rft.spage=13570&rft.epage=13580&rft.pages=13570-13580&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c00118&rft_dat=%3Cproquest_pubme%3E2827256715%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a418t-827ee3e90c128387d322d74c1b7d00a9223eb512ecb911b2a5d2e57f580afdd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827256715&rft_id=info:pmid/37318835&rfr_iscdi=true |