Loading…

Lentiviral gene therapy reverts GPIX expression and phenotype in Bernard-Soulier syndrome type C

Bernard-Soulier syndrome (BSS) is a rare congenital disease characterized by macrothrombocytopenia and frequent bleeding. It is caused by pathogenic variants in three genes (GP1BA, GP1BB, or GP9) that encode for the GPIbα, GPIbβ, and GPIX subunits of the GPIb-V-IX complex, the main platelet surface...

Full description

Saved in:
Bibliographic Details
Published in:Molecular therapy. Nucleic acids 2023-09, Vol.33, p.75-92
Main Authors: Martinez-Navajas, Gonzalo, Ceron-Hernandez, Jorge, Simon, Iris, Lupiañez, Pablo, Diaz-McLynn, Sofia, Perales, Sonia, Modlich, Ute, Guerrero, Jose A., Martin, Francisco, Sevivas, Teresa, Lozano, Maria L., Rivera, Jose, Ramos-Mejia, Veronica, Tersteeg, Claudia, Real, Pedro J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bernard-Soulier syndrome (BSS) is a rare congenital disease characterized by macrothrombocytopenia and frequent bleeding. It is caused by pathogenic variants in three genes (GP1BA, GP1BB, or GP9) that encode for the GPIbα, GPIbβ, and GPIX subunits of the GPIb-V-IX complex, the main platelet surface receptor for von Willebrand factor, being essential for platelet adhesion and aggregation. According to the affected gene, we distinguish BSS type A1 (GP1BA), type B (GP1BB), or type C (GP9). Pathogenic variants in these genes cause absent, incomplete, or dysfunctional GPIb-V-IX receptor and, consequently, a hemorrhagic phenotype. Using gene-editing tools, we generated knockout (KO) human cellular models that helped us to better understand GPIb-V-IX complex assembly. Furthermore, we developed novel lentiviral vectors capable of correcting GPIX expression, localization, and functionality in human GP9-KO megakaryoblastic cell lines. Generated GP9-KO induced pluripotent stem cells produced platelets that recapitulated the BSS phenotype: absence of GPIX on the membrane surface and large size. Importantly, gene therapy tools reverted both characteristics. Finally, hematopoietic stem cells from two unrelated BSS type C patients were transduced with the gene therapy vectors and differentiated to produce GPIX-expressing megakaryocytes and platelets with a reduced size. These results demonstrate the potential of lentiviral-based gene therapy to rescue BSS type C. [Display omitted] Martinez-Navajas and colleagues conducted a study on Bernard-Soulier syndrome type C (BSS type C), a congenital macrothrombocytopenia characterized by coagulation problems caused by GP9 mutations. The authors report gene therapy lentiviral vectors capable of correcting receptor functionality and phenotype of human disease models and hematopoietic stem cells from BSS type C patients ex vivo.
ISSN:2162-2531
2162-2531
DOI:10.1016/j.omtn.2023.06.008