Loading…
The Global Dilemma of Soil Legacy Phosphorus and Its Improvement Strategies under Recent Changes in Agro-Ecosystem Sustainability
Phosphorus (P) is one of the six key elements in plant nutrition and effectively plays a vital role in all major metabolic activities. It is an essential nutrient for plants linked to human food production. Although abundantly present in both organic and inorganic forms in soil, more than 40% of cul...
Saved in:
Published in: | ACS omega 2023-07, Vol.8 (26), p.23271-23282 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phosphorus (P) is one of the six key elements in plant nutrition and effectively plays a vital role in all major metabolic activities. It is an essential nutrient for plants linked to human food production. Although abundantly present in both organic and inorganic forms in soil, more than 40% of cultivated soils are commonly deficient in P concentration. Then, the P inadequacy is a challenge to a sustainable farming system to improve the food production for an increasing population. It is expected that the whole world population will rise to 9 billion by 2050 and, therefore, it is necessary at the same time for agricultural strategies broadly to expand food production up to 80% to 90% by handling the global dilemma which has affected the environment by climatic changes. Furthermore, the phosphate rock annually produced about 5 million metric tons of phosphate fertilizers per year. About 9.5 Mt of phosphorus enters human food through crops and animals such as milk, egg, meat, and fish and is then utilized, and 3.5 Mt P is physically consumed by the human population. Various new techniques and current agricultural practices are said to be improving P-deficient environments, which might help meet the food requirements of an increasing population. However, 4.4% and 3.4% of the dry biomass of wheat and chickpea, respectively, were increased under intercropping practices, which was higher than that in the monocropping system. A wide range of studies showed that green manure crops, especially legumes, improve the soil-available P content of the soil. It is noted that inoculation of arbuscular mycorrhizal fungi could decrease the recommended phosphate fertilizer rate nearly 80%. Agricultural management techniques to improve soil legacy P use by crops include maintaining soil pH by liming, crop rotation, intercropping, planting cover crops, and the consumption of modern fertilizers, in addition to the use of more efficient crop varieties and inoculation with P-solubilizing microorganisms. Therefore, exploring the residual phosphorus in the soil is imperative to reduce the demand for industrial fertilizers while promoting long-term sustainability on a global scale. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c00823 |