Loading…

LEGO-CSM: a tool for functional characterization of proteins

Abstract Motivation With the development of sequencing techniques, the discovery of new proteins significantly exceeds the human capacity and resources for experimentally characterizing protein functions. Localization, EC numbers, and GO terms with the structure-based Cutoff Scanning Matrix (LEGO-CS...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2023-07, Vol.39 (7)
Main Authors: Nguyen, Thanh Binh, de Sá, Alex G C, Rodrigues, Carlos H M, Pires, Douglas E V, Ascher, David B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation With the development of sequencing techniques, the discovery of new proteins significantly exceeds the human capacity and resources for experimentally characterizing protein functions. Localization, EC numbers, and GO terms with the structure-based Cutoff Scanning Matrix (LEGO-CSM) is a comprehensive web-based resource that fills this gap by leveraging the well-established and robust graph-based signatures to supervised learning models using both protein sequence and structure information to accurately model protein function in terms of Subcellular Localization, Enzyme Commission (EC) numbers, and Gene Ontology (GO) terms. Results We show our models perform as well as or better than alternative approaches, achieving area under the receiver operating characteristic curve of up to 0.93 for subcellular localization, up to 0.93 for EC, and up to 0.81 for GO terms on independent blind tests. Availability and implementation LEGO-CSM’s web server is freely available at https://biosig.lab.uq.edu.au/lego_csm. In addition, all datasets used to train and test LEGO-CSM’s models can be downloaded at https://biosig.lab.uq.edu.au/lego_csm/data.
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad402