Loading…
Vitamin E and Its Molecular Effects in Experimental Models of Neurodegenerative Diseases
With the advancement of in vivo studies and clinical trials, the pathogenesis of neurodegenerative diseases has been better understood. However, gaps still need to be better elucidated, which justifies the publication of reviews that explore the mechanisms related to the development of these disease...
Saved in:
Published in: | International journal of molecular sciences 2023-07, Vol.24 (13), p.11191 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the advancement of in vivo studies and clinical trials, the pathogenesis of neurodegenerative diseases has been better understood. However, gaps still need to be better elucidated, which justifies the publication of reviews that explore the mechanisms related to the development of these diseases. Studies show that vitamin E supplementation can protect neurons from the damage caused by oxidative stress, with a positive impact on the prevention and progression of neurodegenerative diseases. Thus, this review aims to summarize the scientific evidence of the effects of vitamin E supplementation on neuroprotection and on neurodegeneration markers in experimental models. A search for studies published between 2000 and 2023 was carried out in the PubMed, Web of Science, Virtual Health Library (BVS), and Embase databases, in which the effects of vitamin E in experimental models of neurodegeneration were investigated. A total of 5669 potentially eligible studies were identified. After excluding the duplicates, 5373 remained, of which 5253 were excluded after checking the titles, 90 articles after reading the abstracts, and 11 after fully reviewing the manuscripts, leaving 19 publications to be included in this review. Experiments with in vivo models of neurodegenerative diseases demonstrated that vitamin E supplementation significantly improved memory, cognition, learning, motor function, and brain markers associated with neuroregeneration and neuroprotection. Vitamin E supplementation reduced beta-amyloid (Aβ) deposition and toxicity in experimental models of Alzheimer's disease. In addition, it decreased tau-protein hyperphosphorylation and increased superoxide dismutase and brain-derived neurotrophic factor (BDNF) levels in rodents, which seems to indicate the potential use of vitamin E in preventing and delaying the progress of degenerative lesions in the central nervous system. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms241311191 |