Loading…

Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging

Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2023-06, Vol.16 (13), p.4733
Main Authors: Tu, Haibo, Bu, Xingying, Liao, Ran, Zhang, Hailong, Ma, Guoliang, Li, Hening, Wan, Jiachen, Ma, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03
container_end_page
container_issue 13
container_start_page 4733
container_title Materials
container_volume 16
creator Tu, Haibo
Bu, Xingying
Liao, Ran
Zhang, Hailong
Ma, Guoliang
Li, Hening
Wan, Jiachen
Ma, Hui
description Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as , , , ', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as , and , are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows.
doi_str_mv 10.3390/ma16134733
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758395035</galeid><sourcerecordid>A758395035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03</originalsourceid><addsrcrecordid>eNpdkVFrFDEUhYMotqx98QfIgC8ibE1yM5PkScpitdClghYfQyZzZ02ZSdZkptp_b4attZo8JNx89-QeDiEvGT0F0PTdaFnDQEiAJ-SYad2smRbi6aP7ETnJ-YaWBcAU18_JEUghairkMfm8SYj7ahuDn2LyYVfFvvoytyOm7NsBq6s2Y7q1k4-h-uZDF3_m6jov4HbGYcBUbe2U_K_qYrS7Un5BnvV2yHhyf67I9fmHr5tP68urjxebs8u1E7Se1qpuAKAHrbWzqJhD3nGOTd0p7FtdGOAg265rLMpWOsk1U1q2fYuy5khhRd4fdPfLsJ3DMCU7mH3yo013Jlpv_n0J_rvZxVvDKAjeFPUVeXOvkOKPGfNkRp9d8WQDxjkbrkBxobla0Nf_oTdxTqH4W6hGSKalLtTpgdrZAY0PfSwfu7I7HL2LAXtf6meyVqBrCnVpeHtocCnmnLB_GJ9Rs6Rr_qZb4FePDT-gf7KE3wlcnzU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836471979</pqid></control><display><type>article</type><title>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Tu, Haibo ; Bu, Xingying ; Liao, Ran ; Zhang, Hailong ; Ma, Guoliang ; Li, Hening ; Wan, Jiachen ; Ma, Hui</creator><creatorcontrib>Tu, Haibo ; Bu, Xingying ; Liao, Ran ; Zhang, Hailong ; Ma, Guoliang ; Li, Hening ; Wan, Jiachen ; Ma, Hui</creatorcontrib><description>Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as , , , ', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as , and , are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134733</identifier><identifier>PMID: 37445047</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cameras ; Correlation analysis ; Creep strength ; Deformation ; Finite element method ; Focal plane ; Glass ; Light ; Methods ; Monitoring ; Parameters ; Phase unwrapping ; Physical properties ; Polymethyl methacrylate ; Real time ; Safety ; Static pressure ; Strain gauges ; Strain hardening ; Submersibles</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4733</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03</cites><orcidid>0000-0001-7597-3518 ; 0000-0001-7120-1860 ; 0000-0001-9662-0447 ; 0000-0002-3088-2230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2836471979/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2836471979?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37445047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Haibo</creatorcontrib><creatorcontrib>Bu, Xingying</creatorcontrib><creatorcontrib>Liao, Ran</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Ma, Guoliang</creatorcontrib><creatorcontrib>Li, Hening</creatorcontrib><creatorcontrib>Wan, Jiachen</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><title>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as , , , ', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as , and , are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows.</description><subject>Cameras</subject><subject>Correlation analysis</subject><subject>Creep strength</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Focal plane</subject><subject>Glass</subject><subject>Light</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Parameters</subject><subject>Phase unwrapping</subject><subject>Physical properties</subject><subject>Polymethyl methacrylate</subject><subject>Real time</subject><subject>Safety</subject><subject>Static pressure</subject><subject>Strain gauges</subject><subject>Strain hardening</subject><subject>Submersibles</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVFrFDEUhYMotqx98QfIgC8ibE1yM5PkScpitdClghYfQyZzZ02ZSdZkptp_b4attZo8JNx89-QeDiEvGT0F0PTdaFnDQEiAJ-SYad2smRbi6aP7ETnJ-YaWBcAU18_JEUghairkMfm8SYj7ahuDn2LyYVfFvvoytyOm7NsBq6s2Y7q1k4-h-uZDF3_m6jov4HbGYcBUbe2U_K_qYrS7Un5BnvV2yHhyf67I9fmHr5tP68urjxebs8u1E7Se1qpuAKAHrbWzqJhD3nGOTd0p7FtdGOAg265rLMpWOsk1U1q2fYuy5khhRd4fdPfLsJ3DMCU7mH3yo013Jlpv_n0J_rvZxVvDKAjeFPUVeXOvkOKPGfNkRp9d8WQDxjkbrkBxobla0Nf_oTdxTqH4W6hGSKalLtTpgdrZAY0PfSwfu7I7HL2LAXtf6meyVqBrCnVpeHtocCnmnLB_GJ9Rs6Rr_qZb4FePDT-gf7KE3wlcnzU</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Tu, Haibo</creator><creator>Bu, Xingying</creator><creator>Liao, Ran</creator><creator>Zhang, Hailong</creator><creator>Ma, Guoliang</creator><creator>Li, Hening</creator><creator>Wan, Jiachen</creator><creator>Ma, Hui</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7597-3518</orcidid><orcidid>https://orcid.org/0000-0001-7120-1860</orcidid><orcidid>https://orcid.org/0000-0001-9662-0447</orcidid><orcidid>https://orcid.org/0000-0002-3088-2230</orcidid></search><sort><creationdate>20230630</creationdate><title>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</title><author>Tu, Haibo ; Bu, Xingying ; Liao, Ran ; Zhang, Hailong ; Ma, Guoliang ; Li, Hening ; Wan, Jiachen ; Ma, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Correlation analysis</topic><topic>Creep strength</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Focal plane</topic><topic>Glass</topic><topic>Light</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Parameters</topic><topic>Phase unwrapping</topic><topic>Physical properties</topic><topic>Polymethyl methacrylate</topic><topic>Real time</topic><topic>Safety</topic><topic>Static pressure</topic><topic>Strain gauges</topic><topic>Strain hardening</topic><topic>Submersibles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Haibo</creatorcontrib><creatorcontrib>Bu, Xingying</creatorcontrib><creatorcontrib>Liao, Ran</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Ma, Guoliang</creatorcontrib><creatorcontrib>Li, Hening</creatorcontrib><creatorcontrib>Wan, Jiachen</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Haibo</au><au>Bu, Xingying</au><au>Liao, Ran</au><au>Zhang, Hailong</au><au>Ma, Guoliang</au><au>Li, Hening</au><au>Wan, Jiachen</au><au>Ma, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-30</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4733</spage><pages>4733-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as , , , ', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as , and , are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37445047</pmid><doi>10.3390/ma16134733</doi><orcidid>https://orcid.org/0000-0001-7597-3518</orcidid><orcidid>https://orcid.org/0000-0001-7120-1860</orcidid><orcidid>https://orcid.org/0000-0001-9662-0447</orcidid><orcidid>https://orcid.org/0000-0002-3088-2230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-06, Vol.16 (13), p.4733
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342632
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry
subjects Cameras
Correlation analysis
Creep strength
Deformation
Finite element method
Focal plane
Glass
Light
Methods
Monitoring
Parameters
Phase unwrapping
Physical properties
Polymethyl methacrylate
Real time
Safety
Static pressure
Strain gauges
Strain hardening
Submersibles
title Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20Monitoring%20of%20Submersible%20Observation%20Windows%20Using%20Mueller%20Matrix%20Imaging&rft.jtitle=Materials&rft.au=Tu,%20Haibo&rft.date=2023-06-30&rft.volume=16&rft.issue=13&rft.spage=4733&rft.pages=4733-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134733&rft_dat=%3Cgale_pubme%3EA758395035%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836471979&rft_id=info:pmid/37445047&rft_galeid=A758395035&rfr_iscdi=true