Loading…
Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging
Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-...
Saved in:
Published in: | Materials 2023-06, Vol.16 (13), p.4733 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03 |
container_end_page | |
container_issue | 13 |
container_start_page | 4733 |
container_title | Materials |
container_volume | 16 |
creator | Tu, Haibo Bu, Xingying Liao, Ran Zhang, Hailong Ma, Guoliang Li, Hening Wan, Jiachen Ma, Hui |
description | Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as
,
,
,
', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as
,
and
, are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows. |
doi_str_mv | 10.3390/ma16134733 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758395035</galeid><sourcerecordid>A758395035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03</originalsourceid><addsrcrecordid>eNpdkVFrFDEUhYMotqx98QfIgC8ibE1yM5PkScpitdClghYfQyZzZ02ZSdZkptp_b4attZo8JNx89-QeDiEvGT0F0PTdaFnDQEiAJ-SYad2smRbi6aP7ETnJ-YaWBcAU18_JEUghairkMfm8SYj7ahuDn2LyYVfFvvoytyOm7NsBq6s2Y7q1k4-h-uZDF3_m6jov4HbGYcBUbe2U_K_qYrS7Un5BnvV2yHhyf67I9fmHr5tP68urjxebs8u1E7Se1qpuAKAHrbWzqJhD3nGOTd0p7FtdGOAg265rLMpWOsk1U1q2fYuy5khhRd4fdPfLsJ3DMCU7mH3yo013Jlpv_n0J_rvZxVvDKAjeFPUVeXOvkOKPGfNkRp9d8WQDxjkbrkBxobla0Nf_oTdxTqH4W6hGSKalLtTpgdrZAY0PfSwfu7I7HL2LAXtf6meyVqBrCnVpeHtocCnmnLB_GJ9Rs6Rr_qZb4FePDT-gf7KE3wlcnzU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836471979</pqid></control><display><type>article</type><title>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Tu, Haibo ; Bu, Xingying ; Liao, Ran ; Zhang, Hailong ; Ma, Guoliang ; Li, Hening ; Wan, Jiachen ; Ma, Hui</creator><creatorcontrib>Tu, Haibo ; Bu, Xingying ; Liao, Ran ; Zhang, Hailong ; Ma, Guoliang ; Li, Hening ; Wan, Jiachen ; Ma, Hui</creatorcontrib><description>Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as
,
,
,
', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as
,
and
, are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134733</identifier><identifier>PMID: 37445047</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cameras ; Correlation analysis ; Creep strength ; Deformation ; Finite element method ; Focal plane ; Glass ; Light ; Methods ; Monitoring ; Parameters ; Phase unwrapping ; Physical properties ; Polymethyl methacrylate ; Real time ; Safety ; Static pressure ; Strain gauges ; Strain hardening ; Submersibles</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4733</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03</cites><orcidid>0000-0001-7597-3518 ; 0000-0001-7120-1860 ; 0000-0001-9662-0447 ; 0000-0002-3088-2230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2836471979/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2836471979?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37445047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Haibo</creatorcontrib><creatorcontrib>Bu, Xingying</creatorcontrib><creatorcontrib>Liao, Ran</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Ma, Guoliang</creatorcontrib><creatorcontrib>Li, Hening</creatorcontrib><creatorcontrib>Wan, Jiachen</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><title>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as
,
,
,
', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as
,
and
, are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows.</description><subject>Cameras</subject><subject>Correlation analysis</subject><subject>Creep strength</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Focal plane</subject><subject>Glass</subject><subject>Light</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Parameters</subject><subject>Phase unwrapping</subject><subject>Physical properties</subject><subject>Polymethyl methacrylate</subject><subject>Real time</subject><subject>Safety</subject><subject>Static pressure</subject><subject>Strain gauges</subject><subject>Strain hardening</subject><subject>Submersibles</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVFrFDEUhYMotqx98QfIgC8ibE1yM5PkScpitdClghYfQyZzZ02ZSdZkptp_b4attZo8JNx89-QeDiEvGT0F0PTdaFnDQEiAJ-SYad2smRbi6aP7ETnJ-YaWBcAU18_JEUghairkMfm8SYj7ahuDn2LyYVfFvvoytyOm7NsBq6s2Y7q1k4-h-uZDF3_m6jov4HbGYcBUbe2U_K_qYrS7Un5BnvV2yHhyf67I9fmHr5tP68urjxebs8u1E7Se1qpuAKAHrbWzqJhD3nGOTd0p7FtdGOAg265rLMpWOsk1U1q2fYuy5khhRd4fdPfLsJ3DMCU7mH3yo013Jlpv_n0J_rvZxVvDKAjeFPUVeXOvkOKPGfNkRp9d8WQDxjkbrkBxobla0Nf_oTdxTqH4W6hGSKalLtTpgdrZAY0PfSwfu7I7HL2LAXtf6meyVqBrCnVpeHtocCnmnLB_GJ9Rs6Rr_qZb4FePDT-gf7KE3wlcnzU</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Tu, Haibo</creator><creator>Bu, Xingying</creator><creator>Liao, Ran</creator><creator>Zhang, Hailong</creator><creator>Ma, Guoliang</creator><creator>Li, Hening</creator><creator>Wan, Jiachen</creator><creator>Ma, Hui</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7597-3518</orcidid><orcidid>https://orcid.org/0000-0001-7120-1860</orcidid><orcidid>https://orcid.org/0000-0001-9662-0447</orcidid><orcidid>https://orcid.org/0000-0002-3088-2230</orcidid></search><sort><creationdate>20230630</creationdate><title>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</title><author>Tu, Haibo ; Bu, Xingying ; Liao, Ran ; Zhang, Hailong ; Ma, Guoliang ; Li, Hening ; Wan, Jiachen ; Ma, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Correlation analysis</topic><topic>Creep strength</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Focal plane</topic><topic>Glass</topic><topic>Light</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Parameters</topic><topic>Phase unwrapping</topic><topic>Physical properties</topic><topic>Polymethyl methacrylate</topic><topic>Real time</topic><topic>Safety</topic><topic>Static pressure</topic><topic>Strain gauges</topic><topic>Strain hardening</topic><topic>Submersibles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Haibo</creatorcontrib><creatorcontrib>Bu, Xingying</creatorcontrib><creatorcontrib>Liao, Ran</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Ma, Guoliang</creatorcontrib><creatorcontrib>Li, Hening</creatorcontrib><creatorcontrib>Wan, Jiachen</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Haibo</au><au>Bu, Xingying</au><au>Liao, Ran</au><au>Zhang, Hailong</au><au>Ma, Guoliang</au><au>Li, Hening</au><au>Wan, Jiachen</au><au>Ma, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-30</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4733</spage><pages>4733-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window's creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as
,
,
,
', are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window's creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as
,
and
, are given from the Mueller matrix images and discussed to illustrate the method's potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37445047</pmid><doi>10.3390/ma16134733</doi><orcidid>https://orcid.org/0000-0001-7597-3518</orcidid><orcidid>https://orcid.org/0000-0001-7120-1860</orcidid><orcidid>https://orcid.org/0000-0001-9662-0447</orcidid><orcidid>https://orcid.org/0000-0002-3088-2230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-06, Vol.16 (13), p.4733 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342632 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry |
subjects | Cameras Correlation analysis Creep strength Deformation Finite element method Focal plane Glass Light Methods Monitoring Parameters Phase unwrapping Physical properties Polymethyl methacrylate Real time Safety Static pressure Strain gauges Strain hardening Submersibles |
title | Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20Monitoring%20of%20Submersible%20Observation%20Windows%20Using%20Mueller%20Matrix%20Imaging&rft.jtitle=Materials&rft.au=Tu,%20Haibo&rft.date=2023-06-30&rft.volume=16&rft.issue=13&rft.spage=4733&rft.pages=4733-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134733&rft_dat=%3Cgale_pubme%3EA758395035%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-856333f3999cae81ce2d22e65d8efb94053237bdd6ae7b7c7291897bfbe752e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836471979&rft_id=info:pmid/37445047&rft_galeid=A758395035&rfr_iscdi=true |