Loading…

Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study

Introduction The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides...

Full description

Saved in:
Bibliographic Details
Published in:Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 2023-09, Vol.26 (5), p.708-720
Main Authors: Veldhuizen, Gregory Patrick, Röcken, Christoph, Behrens, Hans-Michael, Cifci, Didem, Muti, Hannah Sophie, Yoshikawa, Takaki, Arai, Tomio, Oshima, Takashi, Tan, Patrick, Ebert, Matthias P., Pearson, Alexander T., Calderaro, Julien, Grabsch, Heike I., Kather, Jakob Nikolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-155b7e0958294b35cddc667db5443d640522266ae64bf96d570e1f3ac04b9f283
cites cdi_FETCH-LOGICAL-c526t-155b7e0958294b35cddc667db5443d640522266ae64bf96d570e1f3ac04b9f283
container_end_page 720
container_issue 5
container_start_page 708
container_title Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
container_volume 26
creator Veldhuizen, Gregory Patrick
Röcken, Christoph
Behrens, Hans-Michael
Cifci, Didem
Muti, Hannah Sophie
Yoshikawa, Takaki
Arai, Tomio
Oshima, Takashi
Tan, Patrick
Ebert, Matthias P.
Pearson, Alexander T.
Calderaro, Julien
Grabsch, Heike I.
Kather, Jakob Nikolas
description Introduction The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. Objective We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. Methods We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort ( N  = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe ( N  = 322) and one from Japan ( N  = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan–Meier curves with log-rank test statistics. Results Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66–1.44, p -value = 0.51) and 1.23 (95% CI 0.96–1.43, p -value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18–1.65, p -value 
doi_str_mv 10.1007/s10120-023-01398-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10361890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822374336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-155b7e0958294b35cddc667db5443d640522266ae64bf96d570e1f3ac04b9f283</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EoqXwB1ggS2zYGPxOwgahlpdUiQ2sLceZpK4SO9hO1bvpb8eX25bHgtV4dL45tucg9JzR14zS5k1mlHFKKBeEMtG15PoBOmZSaCIEVQ_vzrxjR-hJzpeUMtUx_RgdiYbrTjJ9jG7OAFY8g03Bh4n0NsOA89aX3Vp7HEc82VySd9jZ4CDhC59LnOO0w2uCwbuSsZt98M7OOG7FxQXeYouXbS6e-JCLL1vxMVQ5QUkxr-CKvwKcyzbsnqJHo50zPLutJ-j7xw_fTj-T86-fvpy-PydOcV0IU6pvgHaq5Z3shXLD4LRuhl5JKQYtqeKca21By37s9KAaCmwU1lHZdyNvxQl6d_Bdt36BwUEoyc5mTX6xaWei9eZvJfgLM8Urw6jQrO1odXh165Dijw1yMYvPDubZBohbNrzlXDRSCF3Rl_-gl3FLdQN7SlItteZ7ih8oV5eSE4z3r2HU7PM1h3xNzdf8ytdc16EXf_7jfuQu0AqIA5CrFCZIv-_-j-1P5nW0ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840646626</pqid></control><display><type>article</type><title>Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study</title><source>Springer Nature</source><creator>Veldhuizen, Gregory Patrick ; Röcken, Christoph ; Behrens, Hans-Michael ; Cifci, Didem ; Muti, Hannah Sophie ; Yoshikawa, Takaki ; Arai, Tomio ; Oshima, Takashi ; Tan, Patrick ; Ebert, Matthias P. ; Pearson, Alexander T. ; Calderaro, Julien ; Grabsch, Heike I. ; Kather, Jakob Nikolas</creator><creatorcontrib>Veldhuizen, Gregory Patrick ; Röcken, Christoph ; Behrens, Hans-Michael ; Cifci, Didem ; Muti, Hannah Sophie ; Yoshikawa, Takaki ; Arai, Tomio ; Oshima, Takashi ; Tan, Patrick ; Ebert, Matthias P. ; Pearson, Alexander T. ; Calderaro, Julien ; Grabsch, Heike I. ; Kather, Jakob Nikolas</creatorcontrib><description><![CDATA[Introduction The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. Objective We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. Methods We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort ( N  = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe ( N  = 322) and one from Japan ( N  = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan–Meier curves with log-rank test statistics. Results Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66–1.44, p -value = 0.51) and 1.23 (95% CI 0.96–1.43, p -value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18–1.65, p -value < 0.005) and 1.41 (95% CI 1.20–1.57, p -value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p -value < 0.005, HR 1.43 (95% CI 1.05–1.66, p -value = 0.03) and European cohorts (overall survival log-rank test p -value < 0.005, HR 1.56 (95% CI 1.16–1.76, p -value < 0.005)). Conclusion Our study shows that gastric adenocarcinoma subtyping using pathologist’s Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.]]></description><identifier>ISSN: 1436-3291</identifier><identifier>ISSN: 1436-3305</identifier><identifier>EISSN: 1436-3305</identifier><identifier>DOI: 10.1007/s10120-023-01398-x</identifier><identifier>PMID: 37269416</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Abdominal Surgery ; Adenocarcinoma ; Adenocarcinoma - pathology ; Cancer Research ; Classification ; Clinical outcomes ; Deep Learning ; Diagnostics ; Gastric cancer ; Gastroenterology ; Histology ; Humans ; Intestine ; Machine learning ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Oncology ; Original ; Original Article ; Pathophysiology ; Prognosis ; Proportional Hazards Models ; Retrospective Studies ; Stains &amp; staining ; Statistical analysis ; Stomach Neoplasms - pathology ; Surgical Oncology ; Survival ; Survival analysis ; Typing</subject><ispartof>Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 2023-09, Vol.26 (5), p.708-720</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-155b7e0958294b35cddc667db5443d640522266ae64bf96d570e1f3ac04b9f283</citedby><cites>FETCH-LOGICAL-c526t-155b7e0958294b35cddc667db5443d640522266ae64bf96d570e1f3ac04b9f283</cites><orcidid>0000-0002-3730-5348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37269416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veldhuizen, Gregory Patrick</creatorcontrib><creatorcontrib>Röcken, Christoph</creatorcontrib><creatorcontrib>Behrens, Hans-Michael</creatorcontrib><creatorcontrib>Cifci, Didem</creatorcontrib><creatorcontrib>Muti, Hannah Sophie</creatorcontrib><creatorcontrib>Yoshikawa, Takaki</creatorcontrib><creatorcontrib>Arai, Tomio</creatorcontrib><creatorcontrib>Oshima, Takashi</creatorcontrib><creatorcontrib>Tan, Patrick</creatorcontrib><creatorcontrib>Ebert, Matthias P.</creatorcontrib><creatorcontrib>Pearson, Alexander T.</creatorcontrib><creatorcontrib>Calderaro, Julien</creatorcontrib><creatorcontrib>Grabsch, Heike I.</creatorcontrib><creatorcontrib>Kather, Jakob Nikolas</creatorcontrib><title>Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study</title><title>Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association</title><addtitle>Gastric Cancer</addtitle><addtitle>Gastric Cancer</addtitle><description><![CDATA[Introduction The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. Objective We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. Methods We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort ( N  = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe ( N  = 322) and one from Japan ( N  = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan–Meier curves with log-rank test statistics. Results Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66–1.44, p -value = 0.51) and 1.23 (95% CI 0.96–1.43, p -value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18–1.65, p -value < 0.005) and 1.41 (95% CI 1.20–1.57, p -value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p -value < 0.005, HR 1.43 (95% CI 1.05–1.66, p -value = 0.03) and European cohorts (overall survival log-rank test p -value < 0.005, HR 1.56 (95% CI 1.16–1.76, p -value < 0.005)). Conclusion Our study shows that gastric adenocarcinoma subtyping using pathologist’s Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.]]></description><subject>Abdominal Surgery</subject><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - pathology</subject><subject>Cancer Research</subject><subject>Classification</subject><subject>Clinical outcomes</subject><subject>Deep Learning</subject><subject>Diagnostics</subject><subject>Gastric cancer</subject><subject>Gastroenterology</subject><subject>Histology</subject><subject>Humans</subject><subject>Intestine</subject><subject>Machine learning</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Pathophysiology</subject><subject>Prognosis</subject><subject>Proportional Hazards Models</subject><subject>Retrospective Studies</subject><subject>Stains &amp; staining</subject><subject>Statistical analysis</subject><subject>Stomach Neoplasms - pathology</subject><subject>Surgical Oncology</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Typing</subject><issn>1436-3291</issn><issn>1436-3305</issn><issn>1436-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhS0EoqXwB1ggS2zYGPxOwgahlpdUiQ2sLceZpK4SO9hO1bvpb8eX25bHgtV4dL45tucg9JzR14zS5k1mlHFKKBeEMtG15PoBOmZSaCIEVQ_vzrxjR-hJzpeUMtUx_RgdiYbrTjJ9jG7OAFY8g03Bh4n0NsOA89aX3Vp7HEc82VySd9jZ4CDhC59LnOO0w2uCwbuSsZt98M7OOG7FxQXeYouXbS6e-JCLL1vxMVQ5QUkxr-CKvwKcyzbsnqJHo50zPLutJ-j7xw_fTj-T86-fvpy-PydOcV0IU6pvgHaq5Z3shXLD4LRuhl5JKQYtqeKca21By37s9KAaCmwU1lHZdyNvxQl6d_Bdt36BwUEoyc5mTX6xaWei9eZvJfgLM8Urw6jQrO1odXh165Dijw1yMYvPDubZBohbNrzlXDRSCF3Rl_-gl3FLdQN7SlItteZ7ih8oV5eSE4z3r2HU7PM1h3xNzdf8ytdc16EXf_7jfuQu0AqIA5CrFCZIv-_-j-1P5nW0ew</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Veldhuizen, Gregory Patrick</creator><creator>Röcken, Christoph</creator><creator>Behrens, Hans-Michael</creator><creator>Cifci, Didem</creator><creator>Muti, Hannah Sophie</creator><creator>Yoshikawa, Takaki</creator><creator>Arai, Tomio</creator><creator>Oshima, Takashi</creator><creator>Tan, Patrick</creator><creator>Ebert, Matthias P.</creator><creator>Pearson, Alexander T.</creator><creator>Calderaro, Julien</creator><creator>Grabsch, Heike I.</creator><creator>Kather, Jakob Nikolas</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3730-5348</orcidid></search><sort><creationdate>20230901</creationdate><title>Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study</title><author>Veldhuizen, Gregory Patrick ; Röcken, Christoph ; Behrens, Hans-Michael ; Cifci, Didem ; Muti, Hannah Sophie ; Yoshikawa, Takaki ; Arai, Tomio ; Oshima, Takashi ; Tan, Patrick ; Ebert, Matthias P. ; Pearson, Alexander T. ; Calderaro, Julien ; Grabsch, Heike I. ; Kather, Jakob Nikolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-155b7e0958294b35cddc667db5443d640522266ae64bf96d570e1f3ac04b9f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abdominal Surgery</topic><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - pathology</topic><topic>Cancer Research</topic><topic>Classification</topic><topic>Clinical outcomes</topic><topic>Deep Learning</topic><topic>Diagnostics</topic><topic>Gastric cancer</topic><topic>Gastroenterology</topic><topic>Histology</topic><topic>Humans</topic><topic>Intestine</topic><topic>Machine learning</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Pathophysiology</topic><topic>Prognosis</topic><topic>Proportional Hazards Models</topic><topic>Retrospective Studies</topic><topic>Stains &amp; staining</topic><topic>Statistical analysis</topic><topic>Stomach Neoplasms - pathology</topic><topic>Surgical Oncology</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Typing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veldhuizen, Gregory Patrick</creatorcontrib><creatorcontrib>Röcken, Christoph</creatorcontrib><creatorcontrib>Behrens, Hans-Michael</creatorcontrib><creatorcontrib>Cifci, Didem</creatorcontrib><creatorcontrib>Muti, Hannah Sophie</creatorcontrib><creatorcontrib>Yoshikawa, Takaki</creatorcontrib><creatorcontrib>Arai, Tomio</creatorcontrib><creatorcontrib>Oshima, Takashi</creatorcontrib><creatorcontrib>Tan, Patrick</creatorcontrib><creatorcontrib>Ebert, Matthias P.</creatorcontrib><creatorcontrib>Pearson, Alexander T.</creatorcontrib><creatorcontrib>Calderaro, Julien</creatorcontrib><creatorcontrib>Grabsch, Heike I.</creatorcontrib><creatorcontrib>Kather, Jakob Nikolas</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veldhuizen, Gregory Patrick</au><au>Röcken, Christoph</au><au>Behrens, Hans-Michael</au><au>Cifci, Didem</au><au>Muti, Hannah Sophie</au><au>Yoshikawa, Takaki</au><au>Arai, Tomio</au><au>Oshima, Takashi</au><au>Tan, Patrick</au><au>Ebert, Matthias P.</au><au>Pearson, Alexander T.</au><au>Calderaro, Julien</au><au>Grabsch, Heike I.</au><au>Kather, Jakob Nikolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study</atitle><jtitle>Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association</jtitle><stitle>Gastric Cancer</stitle><addtitle>Gastric Cancer</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>26</volume><issue>5</issue><spage>708</spage><epage>720</epage><pages>708-720</pages><issn>1436-3291</issn><issn>1436-3305</issn><eissn>1436-3305</eissn><abstract><![CDATA[Introduction The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. Objective We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. Methods We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort ( N  = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe ( N  = 322) and one from Japan ( N  = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan–Meier curves with log-rank test statistics. Results Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66–1.44, p -value = 0.51) and 1.23 (95% CI 0.96–1.43, p -value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18–1.65, p -value < 0.005) and 1.41 (95% CI 1.20–1.57, p -value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p -value < 0.005, HR 1.43 (95% CI 1.05–1.66, p -value = 0.03) and European cohorts (overall survival log-rank test p -value < 0.005, HR 1.56 (95% CI 1.16–1.76, p -value < 0.005)). Conclusion Our study shows that gastric adenocarcinoma subtyping using pathologist’s Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.]]></abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37269416</pmid><doi>10.1007/s10120-023-01398-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3730-5348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1436-3291
ispartof Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 2023-09, Vol.26 (5), p.708-720
issn 1436-3291
1436-3305
1436-3305
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10361890
source Springer Nature
subjects Abdominal Surgery
Adenocarcinoma
Adenocarcinoma - pathology
Cancer Research
Classification
Clinical outcomes
Deep Learning
Diagnostics
Gastric cancer
Gastroenterology
Histology
Humans
Intestine
Machine learning
Medical prognosis
Medicine
Medicine & Public Health
Oncology
Original
Original Article
Pathophysiology
Prognosis
Proportional Hazards Models
Retrospective Studies
Stains & staining
Statistical analysis
Stomach Neoplasms - pathology
Surgical Oncology
Survival
Survival analysis
Typing
title Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20subtyping%20of%20gastric%20cancer%20histology%20predicts%20clinical%20outcome:%20a%20multi-institutional%20retrospective%20study&rft.jtitle=Gastric%20cancer%20:%20official%20journal%20of%20the%20International%20Gastric%20Cancer%20Association%20and%20the%20Japanese%20Gastric%20Cancer%20Association&rft.au=Veldhuizen,%20Gregory%20Patrick&rft.date=2023-09-01&rft.volume=26&rft.issue=5&rft.spage=708&rft.epage=720&rft.pages=708-720&rft.issn=1436-3291&rft.eissn=1436-3305&rft_id=info:doi/10.1007/s10120-023-01398-x&rft_dat=%3Cproquest_pubme%3E2822374336%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-155b7e0958294b35cddc667db5443d640522266ae64bf96d570e1f3ac04b9f283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2840646626&rft_id=info:pmid/37269416&rfr_iscdi=true