Loading…
Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology
Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant m...
Saved in:
Published in: | Cancer Immunology, Immunotherapy Immunotherapy, 2023-08, Vol.72 (8), p.2813-2827 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-564c6740121b226711ed41e94a299e7266330dc98efec742f4976da739b16bb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-564c6740121b226711ed41e94a299e7266330dc98efec742f4976da739b16bb73 |
container_end_page | 2827 |
container_issue | 8 |
container_start_page | 2813 |
container_title | Cancer Immunology, Immunotherapy |
container_volume | 72 |
creator | Panni, Usman Y. Chen, Michael Y. Zhang, Felicia Cullinan, Darren R. Li, Lijin James, C. Alston Zhang, Xiuli Rogers, S. Alarcon, A. Baer, John M. Zhang, Daoxiang Gao, Feng Miller, Christopher A. Gong, Qingqing Lim, Kian-Huat DeNardo, David G. Goedegebuure, S. Peter Gillanders, William E. Hawkins, William G. |
description | Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC. |
doi_str_mv | 10.1007/s00262-023-03463-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10361914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840415567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-564c6740121b226711ed41e94a299e7266330dc98efec742f4976da739b16bb73</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi0EoiHwAiyQJTZsBnwbO14hVHGpVIkNrC2P50zqymMH2xM1L8Bz4zRtuSxY2Trn-8_tR-glJW8pIepdIYRJ1hHGO8KF5N3NI7SigrfQpqeP0apFSacIEWfoWSnX7cOI1k_RGVdUaabkCv28iOPiqk8Rpwk7Gx1kHCHZWP0WYsGTdT74aisUPMIeQtrNEOstHXz0zoZwwBkC7JsGz2mE0FQp43oFuNRlPBzZXaucwVbv7pv4eV5iGnwKaXt4jp5MNhR4cfeu0fdPH7-df-kuv36-OP9w2Tmh-tr1UjipBKGMDoxJRSmMgoIWlmkNiknJORmd3sAETgk2Ca3kaBXXA5XDoPgavT_V3S3DDKNrm2QbzC772eaDSdabvzPRX5lt2htKuKS6HXeN3txVyOnHAqWa2RcHIdh2taUYtqG8l2yjSUNf_4NepyXHtl-jBBG07-VxJHaiXE6lZJgepqHEHH02J59N89nc-mxumujVn3s8SO6NbQA_AaWl4hby797_KfsLuCq27Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840415567</pqid></control><display><type>article</type><title>Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology</title><source>PubMed (Medline)</source><source>Springer Nature</source><creator>Panni, Usman Y. ; Chen, Michael Y. ; Zhang, Felicia ; Cullinan, Darren R. ; Li, Lijin ; James, C. Alston ; Zhang, Xiuli ; Rogers, S. ; Alarcon, A. ; Baer, John M. ; Zhang, Daoxiang ; Gao, Feng ; Miller, Christopher A. ; Gong, Qingqing ; Lim, Kian-Huat ; DeNardo, David G. ; Goedegebuure, S. Peter ; Gillanders, William E. ; Hawkins, William G.</creator><creatorcontrib>Panni, Usman Y. ; Chen, Michael Y. ; Zhang, Felicia ; Cullinan, Darren R. ; Li, Lijin ; James, C. Alston ; Zhang, Xiuli ; Rogers, S. ; Alarcon, A. ; Baer, John M. ; Zhang, Daoxiang ; Gao, Feng ; Miller, Christopher A. ; Gong, Qingqing ; Lim, Kian-Huat ; DeNardo, David G. ; Goedegebuure, S. Peter ; Gillanders, William E. ; Hawkins, William G.</creatorcontrib><description>Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC.</description><identifier>ISSN: 0340-7004</identifier><identifier>EISSN: 1432-0851</identifier><identifier>DOI: 10.1007/s00262-023-03463-x</identifier><identifier>PMID: 37179276</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenocarcinoma ; Antigen presentation ; Antigens, Neoplasm ; Cancer immunotherapy ; Cancer Research ; Carcinoma, Pancreatic Ductal - therapy ; CD8 antigen ; CD8-Positive T-Lymphocytes ; Cell differentiation ; Chemokines ; Cloning ; Humans ; Immune checkpoint inhibitors ; Immunogenicity ; Immunology ; Immunotherapy ; Infiltration ; Lymphocytes ; Lymphocytes T ; Medicine ; Medicine & Public Health ; Metastases ; Neoantigens ; Oncology ; Oxaliplatin ; Pancreatic cancer ; Pancreatic Neoplasms ; Pancreatic Neoplasms - therapy ; Tumors ; Vaccines</subject><ispartof>Cancer Immunology, Immunotherapy, 2023-08, Vol.72 (8), p.2813-2827</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-564c6740121b226711ed41e94a299e7266330dc98efec742f4976da739b16bb73</citedby><cites>FETCH-LOGICAL-c475t-564c6740121b226711ed41e94a299e7266330dc98efec742f4976da739b16bb73</cites><orcidid>0000-0001-7087-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361914/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361914/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37179276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panni, Usman Y.</creatorcontrib><creatorcontrib>Chen, Michael Y.</creatorcontrib><creatorcontrib>Zhang, Felicia</creatorcontrib><creatorcontrib>Cullinan, Darren R.</creatorcontrib><creatorcontrib>Li, Lijin</creatorcontrib><creatorcontrib>James, C. Alston</creatorcontrib><creatorcontrib>Zhang, Xiuli</creatorcontrib><creatorcontrib>Rogers, S.</creatorcontrib><creatorcontrib>Alarcon, A.</creatorcontrib><creatorcontrib>Baer, John M.</creatorcontrib><creatorcontrib>Zhang, Daoxiang</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Miller, Christopher A.</creatorcontrib><creatorcontrib>Gong, Qingqing</creatorcontrib><creatorcontrib>Lim, Kian-Huat</creatorcontrib><creatorcontrib>DeNardo, David G.</creatorcontrib><creatorcontrib>Goedegebuure, S. Peter</creatorcontrib><creatorcontrib>Gillanders, William E.</creatorcontrib><creatorcontrib>Hawkins, William G.</creatorcontrib><title>Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology</title><title>Cancer Immunology, Immunotherapy</title><addtitle>Cancer Immunol Immunother</addtitle><addtitle>Cancer Immunol Immunother</addtitle><description>Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC.</description><subject>Adenocarcinoma</subject><subject>Antigen presentation</subject><subject>Antigens, Neoplasm</subject><subject>Cancer immunotherapy</subject><subject>Cancer Research</subject><subject>Carcinoma, Pancreatic Ductal - therapy</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>Cell differentiation</subject><subject>Chemokines</subject><subject>Cloning</subject><subject>Humans</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunogenicity</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Infiltration</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastases</subject><subject>Neoantigens</subject><subject>Oncology</subject><subject>Oxaliplatin</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms</subject><subject>Pancreatic Neoplasms - therapy</subject><subject>Tumors</subject><subject>Vaccines</subject><issn>0340-7004</issn><issn>1432-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctuEzEUhi0EoiHwAiyQJTZsBnwbO14hVHGpVIkNrC2P50zqymMH2xM1L8Bz4zRtuSxY2Trn-8_tR-glJW8pIepdIYRJ1hHGO8KF5N3NI7SigrfQpqeP0apFSacIEWfoWSnX7cOI1k_RGVdUaabkCv28iOPiqk8Rpwk7Gx1kHCHZWP0WYsGTdT74aisUPMIeQtrNEOstHXz0zoZwwBkC7JsGz2mE0FQp43oFuNRlPBzZXaucwVbv7pv4eV5iGnwKaXt4jp5MNhR4cfeu0fdPH7-df-kuv36-OP9w2Tmh-tr1UjipBKGMDoxJRSmMgoIWlmkNiknJORmd3sAETgk2Ca3kaBXXA5XDoPgavT_V3S3DDKNrm2QbzC772eaDSdabvzPRX5lt2htKuKS6HXeN3txVyOnHAqWa2RcHIdh2taUYtqG8l2yjSUNf_4NepyXHtl-jBBG07-VxJHaiXE6lZJgepqHEHH02J59N89nc-mxumujVn3s8SO6NbQA_AaWl4hby797_KfsLuCq27Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Panni, Usman Y.</creator><creator>Chen, Michael Y.</creator><creator>Zhang, Felicia</creator><creator>Cullinan, Darren R.</creator><creator>Li, Lijin</creator><creator>James, C. Alston</creator><creator>Zhang, Xiuli</creator><creator>Rogers, S.</creator><creator>Alarcon, A.</creator><creator>Baer, John M.</creator><creator>Zhang, Daoxiang</creator><creator>Gao, Feng</creator><creator>Miller, Christopher A.</creator><creator>Gong, Qingqing</creator><creator>Lim, Kian-Huat</creator><creator>DeNardo, David G.</creator><creator>Goedegebuure, S. Peter</creator><creator>Gillanders, William E.</creator><creator>Hawkins, William G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7087-3585</orcidid></search><sort><creationdate>20230801</creationdate><title>Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology</title><author>Panni, Usman Y. ; Chen, Michael Y. ; Zhang, Felicia ; Cullinan, Darren R. ; Li, Lijin ; James, C. Alston ; Zhang, Xiuli ; Rogers, S. ; Alarcon, A. ; Baer, John M. ; Zhang, Daoxiang ; Gao, Feng ; Miller, Christopher A. ; Gong, Qingqing ; Lim, Kian-Huat ; DeNardo, David G. ; Goedegebuure, S. Peter ; Gillanders, William E. ; Hawkins, William G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-564c6740121b226711ed41e94a299e7266330dc98efec742f4976da739b16bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenocarcinoma</topic><topic>Antigen presentation</topic><topic>Antigens, Neoplasm</topic><topic>Cancer immunotherapy</topic><topic>Cancer Research</topic><topic>Carcinoma, Pancreatic Ductal - therapy</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>Cell differentiation</topic><topic>Chemokines</topic><topic>Cloning</topic><topic>Humans</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunogenicity</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Infiltration</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastases</topic><topic>Neoantigens</topic><topic>Oncology</topic><topic>Oxaliplatin</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms</topic><topic>Pancreatic Neoplasms - therapy</topic><topic>Tumors</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panni, Usman Y.</creatorcontrib><creatorcontrib>Chen, Michael Y.</creatorcontrib><creatorcontrib>Zhang, Felicia</creatorcontrib><creatorcontrib>Cullinan, Darren R.</creatorcontrib><creatorcontrib>Li, Lijin</creatorcontrib><creatorcontrib>James, C. Alston</creatorcontrib><creatorcontrib>Zhang, Xiuli</creatorcontrib><creatorcontrib>Rogers, S.</creatorcontrib><creatorcontrib>Alarcon, A.</creatorcontrib><creatorcontrib>Baer, John M.</creatorcontrib><creatorcontrib>Zhang, Daoxiang</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Miller, Christopher A.</creatorcontrib><creatorcontrib>Gong, Qingqing</creatorcontrib><creatorcontrib>Lim, Kian-Huat</creatorcontrib><creatorcontrib>DeNardo, David G.</creatorcontrib><creatorcontrib>Goedegebuure, S. Peter</creatorcontrib><creatorcontrib>Gillanders, William E.</creatorcontrib><creatorcontrib>Hawkins, William G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer Immunology, Immunotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panni, Usman Y.</au><au>Chen, Michael Y.</au><au>Zhang, Felicia</au><au>Cullinan, Darren R.</au><au>Li, Lijin</au><au>James, C. Alston</au><au>Zhang, Xiuli</au><au>Rogers, S.</au><au>Alarcon, A.</au><au>Baer, John M.</au><au>Zhang, Daoxiang</au><au>Gao, Feng</au><au>Miller, Christopher A.</au><au>Gong, Qingqing</au><au>Lim, Kian-Huat</au><au>DeNardo, David G.</au><au>Goedegebuure, S. Peter</au><au>Gillanders, William E.</au><au>Hawkins, William G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology</atitle><jtitle>Cancer Immunology, Immunotherapy</jtitle><stitle>Cancer Immunol Immunother</stitle><addtitle>Cancer Immunol Immunother</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>72</volume><issue>8</issue><spage>2813</spage><epage>2827</epage><pages>2813-2827</pages><issn>0340-7004</issn><eissn>1432-0851</eissn><abstract>Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37179276</pmid><doi>10.1007/s00262-023-03463-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7087-3585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7004 |
ispartof | Cancer Immunology, Immunotherapy, 2023-08, Vol.72 (8), p.2813-2827 |
issn | 0340-7004 1432-0851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10361914 |
source | PubMed (Medline); Springer Nature |
subjects | Adenocarcinoma Antigen presentation Antigens, Neoplasm Cancer immunotherapy Cancer Research Carcinoma, Pancreatic Ductal - therapy CD8 antigen CD8-Positive T-Lymphocytes Cell differentiation Chemokines Cloning Humans Immune checkpoint inhibitors Immunogenicity Immunology Immunotherapy Infiltration Lymphocytes Lymphocytes T Medicine Medicine & Public Health Metastases Neoantigens Oncology Oxaliplatin Pancreatic cancer Pancreatic Neoplasms Pancreatic Neoplasms - therapy Tumors Vaccines |
title | Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20cancer%20neoantigens%20facilitates%20development%20of%20clinically%20relevant%20models%20for%20the%20study%20of%20pancreatic%20cancer%20immunobiology&rft.jtitle=Cancer%20Immunology,%20Immunotherapy&rft.au=Panni,%20Usman%20Y.&rft.date=2023-08-01&rft.volume=72&rft.issue=8&rft.spage=2813&rft.epage=2827&rft.pages=2813-2827&rft.issn=0340-7004&rft.eissn=1432-0851&rft_id=info:doi/10.1007/s00262-023-03463-x&rft_dat=%3Cproquest_pubme%3E2840415567%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-564c6740121b226711ed41e94a299e7266330dc98efec742f4976da739b16bb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2840415567&rft_id=info:pmid/37179276&rfr_iscdi=true |