Loading…
Evaluation of radiation dose reduction in head CT using the half-dose method
Purpose The present study introduced the half-dose method (HDM), which halves the radiation dose for conventional head computed tomography (CT), for postoperative hydrocephalus and follow-up for craniosynostosis at a children’s hospital. This study aimed to evaluate the contribution of selective hea...
Saved in:
Published in: | Japanese journal of radiology 2023-08, Vol.41 (8), p.872-881 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The present study introduced the half-dose method (HDM), which halves the radiation dose for conventional head computed tomography (CT), for postoperative hydrocephalus and follow-up for craniosynostosis at a children’s hospital. This study aimed to evaluate the contribution of selective head CT scanning optimization towards the overall reduction of radiation exposure.
Materials and methods
We retrospectively assessed 1227 and 1352 head CT examinations acquired before and after the introduction of the HDM, respectively, in children aged 0–15 years. The radiation exposure was evaluated using the CT dose index volume (CTDI-vol), dose-length product (DLP), rate of HDM introduction, and effect of reducing in-hospital radiation dose before and after the introduction of the HDM. For an objective evaluation of the image quality, head CT scans acquired with HDM and full-dose method (FDM) were randomly selected, and the image noise standard deviation (SD) was measured for each scan. In addition, some HDM images were randomly selected and independently reviewed by two radiologists.
Results
The HDM was introduced in 27.9% of all head CTs. The mean CTDI-vol of all head CTs was 21.5 ± 6.9 mGy after the introduction, a 14.9% reduction. The mean DLP was 418.4 ± 152.9 mGy.cm after the introduction, a 17.2% reduction. Compared to the FDM images, the noise SD of the HDM ones worsened by almost 0.9; however, none of the images were difficult or impossible to evaluate.
Conclusion
The HDM yielded diagnostically acceptable images. In addition, a change in protocol for only two diseases successfully reduced the patients’ overall radiation exposure by approximately 15%. Introducing and optimizing the HDM for frequently performed target diseases will be useful in reducing the exposure dose for the hospital’s patient population. |
---|---|
ISSN: | 1867-1071 1867-108X |
DOI: | 10.1007/s11604-023-01410-5 |