Loading…
Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds
High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular...
Saved in:
Published in: | ACS nano 2023-07, Vol.17 (14), p.13110-13120 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3 |
container_end_page | 13120 |
container_issue | 14 |
container_start_page | 13110 |
container_title | ACS nano |
container_volume | 17 |
creator | Orun, Abigail R. Shields, Ethan T. Dmytriw, Sara Vajapayajula, Ananya Slaughter, Caroline K. Snow, Christopher D. |
description | High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials. |
doi_str_mv | 10.1021/acsnano.2c07282 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833997885</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRS0EoqWwZoeyRIK2dpzEzgpV5SmVhwRI7CzHGZdUSVzsBKk7_oE_5Etw1VLBgtWMNOfeGc1F6JDgAcEhGUrlalmbQagwC3m4hbokpUkf8-Rle9PHpIP2nJthHDPOkl3UoSzCLI6SLprcmrwtpQ0erGmgqL8-Ps_vRsHYKLtwjSxdIJ2fgSocnC6hqZVVJbMSgpFzUGXlInhUUmtT5m4f7WgvgYN17aHny4un8XV_cn91Mx5N-jKiuOknCgikAFppTSHNsYxCrDinLM6jiLCUUcU0lwxy6sEkS3gu01xpzFhGSEZ76GzlO2-zCnIFdWNlKea2qKRdCCML8XdSF69iat4FwZTRJA69w_HawZq3FlwjqsIpKEtZg2mdCDmlaco4jz06XKHKGucs6M0egsUyBLEOQaxD8Iqj3-dt-J-ve-BkBXilmJnW1v5b_9p9A3Sclak</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833997885</pqid></control><display><type>article</type><title>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Orun, Abigail R. ; Shields, Ethan T. ; Dmytriw, Sara ; Vajapayajula, Ananya ; Slaughter, Caroline K. ; Snow, Christopher D.</creator><creatorcontrib>Orun, Abigail R. ; Shields, Ethan T. ; Dmytriw, Sara ; Vajapayajula, Ananya ; Slaughter, Caroline K. ; Snow, Christopher D.</creatorcontrib><description>High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c07282</identifier><identifier>PMID: 37407546</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Sequence ; Crystallization ; DNA</subject><ispartof>ACS nano, 2023-07, Vol.17 (14), p.13110-13120</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</citedby><cites>FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</cites><orcidid>0000-0003-0343-0594 ; 0000-0003-3090-1363 ; 0000-0002-7690-3519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37407546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orun, Abigail R.</creatorcontrib><creatorcontrib>Shields, Ethan T.</creatorcontrib><creatorcontrib>Dmytriw, Sara</creatorcontrib><creatorcontrib>Vajapayajula, Ananya</creatorcontrib><creatorcontrib>Slaughter, Caroline K.</creatorcontrib><creatorcontrib>Snow, Christopher D.</creatorcontrib><title>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.</description><subject>Base Sequence</subject><subject>Crystallization</subject><subject>DNA</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRS0EoqWwZoeyRIK2dpzEzgpV5SmVhwRI7CzHGZdUSVzsBKk7_oE_5Etw1VLBgtWMNOfeGc1F6JDgAcEhGUrlalmbQagwC3m4hbokpUkf8-Rle9PHpIP2nJthHDPOkl3UoSzCLI6SLprcmrwtpQ0erGmgqL8-Ps_vRsHYKLtwjSxdIJ2fgSocnC6hqZVVJbMSgpFzUGXlInhUUmtT5m4f7WgvgYN17aHny4un8XV_cn91Mx5N-jKiuOknCgikAFppTSHNsYxCrDinLM6jiLCUUcU0lwxy6sEkS3gu01xpzFhGSEZ76GzlO2-zCnIFdWNlKea2qKRdCCML8XdSF69iat4FwZTRJA69w_HawZq3FlwjqsIpKEtZg2mdCDmlaco4jz06XKHKGucs6M0egsUyBLEOQaxD8Iqj3-dt-J-ve-BkBXilmJnW1v5b_9p9A3Sclak</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Orun, Abigail R.</creator><creator>Shields, Ethan T.</creator><creator>Dmytriw, Sara</creator><creator>Vajapayajula, Ananya</creator><creator>Slaughter, Caroline K.</creator><creator>Snow, Christopher D.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0343-0594</orcidid><orcidid>https://orcid.org/0000-0003-3090-1363</orcidid><orcidid>https://orcid.org/0000-0002-7690-3519</orcidid></search><sort><creationdate>20230725</creationdate><title>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</title><author>Orun, Abigail R. ; Shields, Ethan T. ; Dmytriw, Sara ; Vajapayajula, Ananya ; Slaughter, Caroline K. ; Snow, Christopher D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base Sequence</topic><topic>Crystallization</topic><topic>DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orun, Abigail R.</creatorcontrib><creatorcontrib>Shields, Ethan T.</creatorcontrib><creatorcontrib>Dmytriw, Sara</creatorcontrib><creatorcontrib>Vajapayajula, Ananya</creatorcontrib><creatorcontrib>Slaughter, Caroline K.</creatorcontrib><creatorcontrib>Snow, Christopher D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orun, Abigail R.</au><au>Shields, Ethan T.</au><au>Dmytriw, Sara</au><au>Vajapayajula, Ananya</au><au>Slaughter, Caroline K.</au><au>Snow, Christopher D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>17</volume><issue>14</issue><spage>13110</spage><epage>13120</epage><pages>13110-13120</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37407546</pmid><doi>10.1021/acsnano.2c07282</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0343-0594</orcidid><orcidid>https://orcid.org/0000-0003-3090-1363</orcidid><orcidid>https://orcid.org/0000-0002-7690-3519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-07, Vol.17 (14), p.13110-13120 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373652 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Base Sequence Crystallization DNA |
title | Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20Protein%E2%80%93DNA%20Cocrystals%20as%20Precise,%20Programmable%20Assembly%20Scaffolds&rft.jtitle=ACS%20nano&rft.au=Orun,%20Abigail%20R.&rft.date=2023-07-25&rft.volume=17&rft.issue=14&rft.spage=13110&rft.epage=13120&rft.pages=13110-13120&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c07282&rft_dat=%3Cproquest_pubme%3E2833997885%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2833997885&rft_id=info:pmid/37407546&rfr_iscdi=true |