Loading…

Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds

High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2023-07, Vol.17 (14), p.13110-13120
Main Authors: Orun, Abigail R., Shields, Ethan T., Dmytriw, Sara, Vajapayajula, Ananya, Slaughter, Caroline K., Snow, Christopher D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3
cites cdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3
container_end_page 13120
container_issue 14
container_start_page 13110
container_title ACS nano
container_volume 17
creator Orun, Abigail R.
Shields, Ethan T.
Dmytriw, Sara
Vajapayajula, Ananya
Slaughter, Caroline K.
Snow, Christopher D.
description High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.
doi_str_mv 10.1021/acsnano.2c07282
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833997885</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRS0EoqWwZoeyRIK2dpzEzgpV5SmVhwRI7CzHGZdUSVzsBKk7_oE_5Etw1VLBgtWMNOfeGc1F6JDgAcEhGUrlalmbQagwC3m4hbokpUkf8-Rle9PHpIP2nJthHDPOkl3UoSzCLI6SLprcmrwtpQ0erGmgqL8-Ps_vRsHYKLtwjSxdIJ2fgSocnC6hqZVVJbMSgpFzUGXlInhUUmtT5m4f7WgvgYN17aHny4un8XV_cn91Mx5N-jKiuOknCgikAFppTSHNsYxCrDinLM6jiLCUUcU0lwxy6sEkS3gu01xpzFhGSEZ76GzlO2-zCnIFdWNlKea2qKRdCCML8XdSF69iat4FwZTRJA69w_HawZq3FlwjqsIpKEtZg2mdCDmlaco4jz06XKHKGucs6M0egsUyBLEOQaxD8Iqj3-dt-J-ve-BkBXilmJnW1v5b_9p9A3Sclak</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833997885</pqid></control><display><type>article</type><title>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Orun, Abigail R. ; Shields, Ethan T. ; Dmytriw, Sara ; Vajapayajula, Ananya ; Slaughter, Caroline K. ; Snow, Christopher D.</creator><creatorcontrib>Orun, Abigail R. ; Shields, Ethan T. ; Dmytriw, Sara ; Vajapayajula, Ananya ; Slaughter, Caroline K. ; Snow, Christopher D.</creatorcontrib><description>High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c07282</identifier><identifier>PMID: 37407546</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Sequence ; Crystallization ; DNA</subject><ispartof>ACS nano, 2023-07, Vol.17 (14), p.13110-13120</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</citedby><cites>FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</cites><orcidid>0000-0003-0343-0594 ; 0000-0003-3090-1363 ; 0000-0002-7690-3519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37407546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orun, Abigail R.</creatorcontrib><creatorcontrib>Shields, Ethan T.</creatorcontrib><creatorcontrib>Dmytriw, Sara</creatorcontrib><creatorcontrib>Vajapayajula, Ananya</creatorcontrib><creatorcontrib>Slaughter, Caroline K.</creatorcontrib><creatorcontrib>Snow, Christopher D.</creatorcontrib><title>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.</description><subject>Base Sequence</subject><subject>Crystallization</subject><subject>DNA</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRS0EoqWwZoeyRIK2dpzEzgpV5SmVhwRI7CzHGZdUSVzsBKk7_oE_5Etw1VLBgtWMNOfeGc1F6JDgAcEhGUrlalmbQagwC3m4hbokpUkf8-Rle9PHpIP2nJthHDPOkl3UoSzCLI6SLprcmrwtpQ0erGmgqL8-Ps_vRsHYKLtwjSxdIJ2fgSocnC6hqZVVJbMSgpFzUGXlInhUUmtT5m4f7WgvgYN17aHny4un8XV_cn91Mx5N-jKiuOknCgikAFppTSHNsYxCrDinLM6jiLCUUcU0lwxy6sEkS3gu01xpzFhGSEZ76GzlO2-zCnIFdWNlKea2qKRdCCML8XdSF69iat4FwZTRJA69w_HawZq3FlwjqsIpKEtZg2mdCDmlaco4jz06XKHKGucs6M0egsUyBLEOQaxD8Iqj3-dt-J-ve-BkBXilmJnW1v5b_9p9A3Sclak</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Orun, Abigail R.</creator><creator>Shields, Ethan T.</creator><creator>Dmytriw, Sara</creator><creator>Vajapayajula, Ananya</creator><creator>Slaughter, Caroline K.</creator><creator>Snow, Christopher D.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0343-0594</orcidid><orcidid>https://orcid.org/0000-0003-3090-1363</orcidid><orcidid>https://orcid.org/0000-0002-7690-3519</orcidid></search><sort><creationdate>20230725</creationdate><title>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</title><author>Orun, Abigail R. ; Shields, Ethan T. ; Dmytriw, Sara ; Vajapayajula, Ananya ; Slaughter, Caroline K. ; Snow, Christopher D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base Sequence</topic><topic>Crystallization</topic><topic>DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orun, Abigail R.</creatorcontrib><creatorcontrib>Shields, Ethan T.</creatorcontrib><creatorcontrib>Dmytriw, Sara</creatorcontrib><creatorcontrib>Vajapayajula, Ananya</creatorcontrib><creatorcontrib>Slaughter, Caroline K.</creatorcontrib><creatorcontrib>Snow, Christopher D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orun, Abigail R.</au><au>Shields, Ethan T.</au><au>Dmytriw, Sara</au><au>Vajapayajula, Ananya</au><au>Slaughter, Caroline K.</au><au>Snow, Christopher D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>17</volume><issue>14</issue><spage>13110</spage><epage>13120</epage><pages>13110-13120</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein–DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA–DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein–protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal–organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA–DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA–DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37407546</pmid><doi>10.1021/acsnano.2c07282</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0343-0594</orcidid><orcidid>https://orcid.org/0000-0003-3090-1363</orcidid><orcidid>https://orcid.org/0000-0002-7690-3519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-07, Vol.17 (14), p.13110-13120
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373652
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Base Sequence
Crystallization
DNA
title Modular Protein–DNA Cocrystals as Precise, Programmable Assembly Scaffolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20Protein%E2%80%93DNA%20Cocrystals%20as%20Precise,%20Programmable%20Assembly%20Scaffolds&rft.jtitle=ACS%20nano&rft.au=Orun,%20Abigail%20R.&rft.date=2023-07-25&rft.volume=17&rft.issue=14&rft.spage=13110&rft.epage=13120&rft.pages=13110-13120&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c07282&rft_dat=%3Cproquest_pubme%3E2833997885%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a430t-6ce1e9eefcff3e9d0a420c88375d4417973c7f8a7ed31e96b68da9dcf077b11b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2833997885&rft_id=info:pmid/37407546&rfr_iscdi=true