Loading…
Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes
There is an increasing need for sustainable energy storage solutions as fossil fuels are replaced by renewable energy sources. Multivalent batteries, specifically Mg batteries, are one energy storage technology that researchers continue to develop with hopes to surpass the performance of Li-ion batt...
Saved in:
Published in: | ACS applied materials & interfaces 2023-07, Vol.15 (29), p.34983-34991 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 34991 |
container_issue | 29 |
container_start_page | 34983 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Rutt, Ann Sari, Dogancan Chen, Qian Kim, Jiyoon Ceder, Gerbrand Persson, Kristin A. |
description | There is an increasing need for sustainable energy storage solutions as fossil fuels are replaced by renewable energy sources. Multivalent batteries, specifically Mg batteries, are one energy storage technology that researchers continue to develop with hopes to surpass the performance of Li-ion batteries. However, the limited energy density and transport properties of Mg cathodes remain critical challenges preventing the realization of high-performance multivalent batteries. In this work, ABO4 zircon materials (A = Y, Eu and B = V, Cr) are computationally and experimentally evaluated as Mg intercalation cathodes. Remarkably good Mg-ion transport properties were predicted and Mg-ion intercalation was experimentally verified in sol–gel synthesized zircon YVO4, EuVO4, and EuCrO4. Among them, EuVO4 exhibited the best electrochemical performance and demonstrated repeated reversible cycling. While we believe that the one-dimensional diffusion channels and redox-active species tetragonal coordination limit the value of many zircons as high-performance cathodes, their unique structural motif of overlapping polyhedra along the diffusion pathway appears instrumental for promoting good Mg-ion mobility. The motif results in a favorable “6-5-4” change in coordination that avoids unfavorable sites with lower coordination along the diffusion pathway and a structural design metric for future Mg cathode development. |
doi_str_mv | 10.1021/acsami.3c05964 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10375429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836294043</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-32754bc66b9d3ef3e19ed736f8ffdbe0504b626e3b0483ea827dc7d1204a5133</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtSpQ-eq1Z6snVCnUX3GSXhBdAV2JBaTuqRfLcSZZo8QG21mJf4_RrpA4eeR58968eQh9p-SCEkZ_aRP1ZC-4IWUjxRd0TBshipqV7OCjFuIIncT4RIjkjJRf0RGvBOdEsGP0cu-3MOJ_KcwmzUGPeOWT7fHa48fgJ58Ar4Zi6V3-b-1o0-tvvHRbiMkOOlk34Ks_DwL_t8F4F7GOeKUHB9HOU8YlCEaPGZfnFzptfAfxDB32eozwbf-eovXN9Xrxt7h7uF0uru4KzYVMBWdVKVojZdt0HHoOtIGu4rKv-75rgZREtJJJ4C0RNQdds6ozVUcZEbqknJ-iyx3t89xO0BlwKbtTz8FOOrwqr6363HF2owa_VZTwrMyazPBjx-CzWRWNTWA22aUDkxRtmrKSIoPO9zLBv8z5LGqy0cA4agd-jorVXLJGEPG-0c8dNGemnvwcXLaf5dR7kGoXpNoHyd8AEnWR2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836294043</pqid></control><display><type>article</type><title>Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Rutt, Ann ; Sari, Dogancan ; Chen, Qian ; Kim, Jiyoon ; Ceder, Gerbrand ; Persson, Kristin A.</creator><creatorcontrib>Rutt, Ann ; Sari, Dogancan ; Chen, Qian ; Kim, Jiyoon ; Ceder, Gerbrand ; Persson, Kristin A. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>There is an increasing need for sustainable energy storage solutions as fossil fuels are replaced by renewable energy sources. Multivalent batteries, specifically Mg batteries, are one energy storage technology that researchers continue to develop with hopes to surpass the performance of Li-ion batteries. However, the limited energy density and transport properties of Mg cathodes remain critical challenges preventing the realization of high-performance multivalent batteries. In this work, ABO4 zircon materials (A = Y, Eu and B = V, Cr) are computationally and experimentally evaluated as Mg intercalation cathodes. Remarkably good Mg-ion transport properties were predicted and Mg-ion intercalation was experimentally verified in sol–gel synthesized zircon YVO4, EuVO4, and EuCrO4. Among them, EuVO4 exhibited the best electrochemical performance and demonstrated repeated reversible cycling. While we believe that the one-dimensional diffusion channels and redox-active species tetragonal coordination limit the value of many zircons as high-performance cathodes, their unique structural motif of overlapping polyhedra along the diffusion pathway appears instrumental for promoting good Mg-ion mobility. The motif results in a favorable “6-5-4” change in coordination that avoids unfavorable sites with lower coordination along the diffusion pathway and a structural design metric for future Mg cathode development.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c05964</identifier><identifier>PMID: 37433042</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cathodes ; Diffusion ; ENERGY STORAGE ; Energy, Environmental, and Catalysis Applications ; Magnesium batteries ; Multivalent ion mobility</subject><ispartof>ACS applied materials & interfaces, 2023-07, Vol.15 (29), p.34983-34991</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6534-454X ; 0009-0009-3557-0744 ; 0000-0003-2495-5509 ; 0000-0001-9275-3605 ; 0000-0002-0383-1198 ; 0000000324955509 ; 0000000203831198 ; 000000016534454X ; 0000000192753605 ; 0009000935570744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1995764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rutt, Ann</creatorcontrib><creatorcontrib>Sari, Dogancan</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Kim, Jiyoon</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Persson, Kristin A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>There is an increasing need for sustainable energy storage solutions as fossil fuels are replaced by renewable energy sources. Multivalent batteries, specifically Mg batteries, are one energy storage technology that researchers continue to develop with hopes to surpass the performance of Li-ion batteries. However, the limited energy density and transport properties of Mg cathodes remain critical challenges preventing the realization of high-performance multivalent batteries. In this work, ABO4 zircon materials (A = Y, Eu and B = V, Cr) are computationally and experimentally evaluated as Mg intercalation cathodes. Remarkably good Mg-ion transport properties were predicted and Mg-ion intercalation was experimentally verified in sol–gel synthesized zircon YVO4, EuVO4, and EuCrO4. Among them, EuVO4 exhibited the best electrochemical performance and demonstrated repeated reversible cycling. While we believe that the one-dimensional diffusion channels and redox-active species tetragonal coordination limit the value of many zircons as high-performance cathodes, their unique structural motif of overlapping polyhedra along the diffusion pathway appears instrumental for promoting good Mg-ion mobility. The motif results in a favorable “6-5-4” change in coordination that avoids unfavorable sites with lower coordination along the diffusion pathway and a structural design metric for future Mg cathode development.</description><subject>Cathodes</subject><subject>Diffusion</subject><subject>ENERGY STORAGE</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>Magnesium batteries</subject><subject>Multivalent ion mobility</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1P3DAQtSpQ-eq1Z6snVCnUX3GSXhBdAV2JBaTuqRfLcSZZo8QG21mJf4_RrpA4eeR58968eQh9p-SCEkZ_aRP1ZC-4IWUjxRd0TBshipqV7OCjFuIIncT4RIjkjJRf0RGvBOdEsGP0cu-3MOJ_KcwmzUGPeOWT7fHa48fgJ58Ar4Zi6V3-b-1o0-tvvHRbiMkOOlk34Ks_DwL_t8F4F7GOeKUHB9HOU8YlCEaPGZfnFzptfAfxDB32eozwbf-eovXN9Xrxt7h7uF0uru4KzYVMBWdVKVojZdt0HHoOtIGu4rKv-75rgZREtJJJ4C0RNQdds6ozVUcZEbqknJ-iyx3t89xO0BlwKbtTz8FOOrwqr6363HF2owa_VZTwrMyazPBjx-CzWRWNTWA22aUDkxRtmrKSIoPO9zLBv8z5LGqy0cA4agd-jorVXLJGEPG-0c8dNGemnvwcXLaf5dR7kGoXpNoHyd8AEnWR2g</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Rutt, Ann</creator><creator>Sari, Dogancan</creator><creator>Chen, Qian</creator><creator>Kim, Jiyoon</creator><creator>Ceder, Gerbrand</creator><creator>Persson, Kristin A.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6534-454X</orcidid><orcidid>https://orcid.org/0009-0009-3557-0744</orcidid><orcidid>https://orcid.org/0000-0003-2495-5509</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-0383-1198</orcidid><orcidid>https://orcid.org/0000000324955509</orcidid><orcidid>https://orcid.org/0000000203831198</orcidid><orcidid>https://orcid.org/000000016534454X</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0009000935570744</orcidid></search><sort><creationdate>20230726</creationdate><title>Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes</title><author>Rutt, Ann ; Sari, Dogancan ; Chen, Qian ; Kim, Jiyoon ; Ceder, Gerbrand ; Persson, Kristin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-32754bc66b9d3ef3e19ed736f8ffdbe0504b626e3b0483ea827dc7d1204a5133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Diffusion</topic><topic>ENERGY STORAGE</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>Magnesium batteries</topic><topic>Multivalent ion mobility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rutt, Ann</creatorcontrib><creatorcontrib>Sari, Dogancan</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Kim, Jiyoon</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Persson, Kristin A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rutt, Ann</au><au>Sari, Dogancan</au><au>Chen, Qian</au><au>Kim, Jiyoon</au><au>Ceder, Gerbrand</au><au>Persson, Kristin A.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-07-26</date><risdate>2023</risdate><volume>15</volume><issue>29</issue><spage>34983</spage><epage>34991</epage><pages>34983-34991</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>There is an increasing need for sustainable energy storage solutions as fossil fuels are replaced by renewable energy sources. Multivalent batteries, specifically Mg batteries, are one energy storage technology that researchers continue to develop with hopes to surpass the performance of Li-ion batteries. However, the limited energy density and transport properties of Mg cathodes remain critical challenges preventing the realization of high-performance multivalent batteries. In this work, ABO4 zircon materials (A = Y, Eu and B = V, Cr) are computationally and experimentally evaluated as Mg intercalation cathodes. Remarkably good Mg-ion transport properties were predicted and Mg-ion intercalation was experimentally verified in sol–gel synthesized zircon YVO4, EuVO4, and EuCrO4. Among them, EuVO4 exhibited the best electrochemical performance and demonstrated repeated reversible cycling. While we believe that the one-dimensional diffusion channels and redox-active species tetragonal coordination limit the value of many zircons as high-performance cathodes, their unique structural motif of overlapping polyhedra along the diffusion pathway appears instrumental for promoting good Mg-ion mobility. The motif results in a favorable “6-5-4” change in coordination that avoids unfavorable sites with lower coordination along the diffusion pathway and a structural design metric for future Mg cathode development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37433042</pmid><doi>10.1021/acsami.3c05964</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6534-454X</orcidid><orcidid>https://orcid.org/0009-0009-3557-0744</orcidid><orcidid>https://orcid.org/0000-0003-2495-5509</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-0383-1198</orcidid><orcidid>https://orcid.org/0000000324955509</orcidid><orcidid>https://orcid.org/0000000203831198</orcidid><orcidid>https://orcid.org/000000016534454X</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0009000935570744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-07, Vol.15 (29), p.34983-34991 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10375429 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Cathodes Diffusion ENERGY STORAGE Energy, Environmental, and Catalysis Applications Magnesium batteries Multivalent ion mobility |
title | Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Structural%20Motif%20To%20Promote%20Mg-Ion%20Mobility:%20Investigating%20ABO4%20Zircons%20as%20Magnesium%20Intercalation%20Cathodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Rutt,%20Ann&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-07-26&rft.volume=15&rft.issue=29&rft.spage=34983&rft.epage=34991&rft.pages=34983-34991&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c05964&rft_dat=%3Cproquest_pubme%3E2836294043%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a346t-32754bc66b9d3ef3e19ed736f8ffdbe0504b626e3b0483ea827dc7d1204a5133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836294043&rft_id=info:pmid/37433042&rfr_iscdi=true |