Loading…
Intratumoural Delivery of mRNA Loaded on a Cationic Hyper-Branched Cyclodextrin-Based Polymer Induced an Anti-Tumour Immunological Response in Melanoma
mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclode...
Saved in:
Published in: | Cancers 2023-07, Vol.15 (14), p.3748 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclodextrin-based polymer to increase mRNA delivery in both in vitro and in vivo melanoma cancer. We found that the transfection efficacy of the mRNA-EGFP-loaded Ppoly system was significantly higher than that of lipofectamine and free mRNA in both 2D and 3D melanoma cancer cells; also, this delivery system did not show cytotoxicity. In addition, the biodistribution results revealed time-dependent and significantly higher mEGFP expression in complexes with Ppoly compared to free mRNA. We then checked the anti-tumour effect of intratumourally injected free mRNA-OVA, a foreign antigen, and loaded Ppoly; the results showed a considerable decrease in both tumour size and weight in the group treated with OVA-mRNA in loaded Ppoly compared to other formulations with an efficient adaptive immune response by dramatically increasing most leukocyte subtypes and OVA-specific CD8+ T cells in both the spleen and tumour tissues. Collectively, our findings suggest that the local delivery of cationic cyclodextrin-based polymer complexes containing foreign mRNA antigens might be a good and reliable concept for cancer immunotherapy. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers15143748 |