Loading…

Ectopic Lipid Accumulation Correlates with Cellular Stress in Rabbit Blastocysts from Diabetic Mothers

Maternal diabetes mellitus in early pregnancy leads to hyperlipidemia in reproductive tract organs and an altered embryonic environment. To investigate the consequences on embryonic metabolism, the effect of high environmental-lipid levels was studied in rabbit blastocysts cultured with a lipid mixt...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-07, Vol.24 (14), p.11776
Main Authors: Schindler, Maria, Geisler, Sophia Mareike, Seeling, Tom, Navarrete Santos, Anne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maternal diabetes mellitus in early pregnancy leads to hyperlipidemia in reproductive tract organs and an altered embryonic environment. To investigate the consequences on embryonic metabolism, the effect of high environmental-lipid levels was studied in rabbit blastocysts cultured with a lipid mixture in vitro and in blastocysts from diabetic, hyperlipidemic rabbits in vivo. The gene and protein expression of marker molecules involved in lipid metabolism and stress response were analyzed. In diabetic rabbits, the expression of embryoblast genes encoding carnitine palmityl transferase 1 and peroxisome proliferator-activated receptors α and γ increased, whereas trophoblast genes encoding for proteins associated with fatty acid synthesis and β-oxidation decreased. Markers for endoplasmic (activating transcription factor 4) and oxidative stress (nuclear factor erythroid 2-related factor 2) were increased in embryoblasts, while markers for cellular redox status (superoxide dismutase 2) and stress (heat shock protein 70) were increased in trophoblasts from diabetic rabbits. The observed regulation pattern in vivo was consistent with an adaptation response to the hyperlipidemic environment, suggesting that maternal lipids have an impact on the intracellular metabolism of the preimplantation embryo in diabetic pregnancy and that embryoblasts are particularly vulnerable to metabolic stress.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241411776