Loading…

Negative Capacitance in Nanocomposite Based on High-Density Polyethylene (HDPE) with Multiwalled Carbon Nanotubes (CNTs)

Negative capacitance (NC), already observed in conducting polymer-based nanocomposites, was recently reported and evidenced at low frequencies (

Saved in:
Bibliographic Details
Published in:Materials 2023-07, Vol.16 (14), p.4901
Main Authors: Mouecoucou, Raymonde, Bonnaud, Leïla, Dubois, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-349d2911fe0fc12ee04739f0a2711f8baa107cb951e952e21a1fe8660d0496d23
cites cdi_FETCH-LOGICAL-c407t-349d2911fe0fc12ee04739f0a2711f8baa107cb951e952e21a1fe8660d0496d23
container_end_page
container_issue 14
container_start_page 4901
container_title Materials
container_volume 16
creator Mouecoucou, Raymonde
Bonnaud, Leïla
Dubois, Philippe
description Negative capacitance (NC), already observed in conducting polymer-based nanocomposites, was recently reported and evidenced at low frequencies (
doi_str_mv 10.3390/ma16144901
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10381602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843080533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-349d2911fe0fc12ee04739f0a2711f8baa107cb951e952e21a1fe8660d0496d23</originalsourceid><addsrcrecordid>eNpdkcFu1DAQhq0KRKvSCw9QWeKyRQp4Ym8SnxCkhUVqtz2Us-U4k11Xjr2NnZZ9e7LaUgpzmdHMN79m9BPyDthHziX71GsoQAjJ4IAcgZRFBlKIVy_qQ3IS4x2bgnOocvmGHPJyDjmUxRH5tcSVTvYBaa032tikvUFqPV1qH0zoNyHahPSrjtjS4OnCrtbZOfqpu6U3wW0xrbcOPdLZ4vzm4ow-2rSmV6NL9lE7Ny3VemjCXi-NDUY6q5e38ewted1pF_HkKR-Tn98ubutFdnn9_Uf95TIzgpUp40K2uQTokHUGckQmSi47pvNyalaN1sBK08g5oJznmIOe0KooWMuELNqcH5PPe93N2PTYGvRp0E5tBtvrYauCturfibdrtQoPChivoGA7hdmTwhDuR4xJ9TYadE57DGNUeSUEk7wq-YS-_w-9C-Pgp_92FGcVm_Md9WFPmSHEOGD3fA0wtTNV_TV1gk9f3v-M_rGQ_warH5vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843080533</pqid></control><display><type>article</type><title>Negative Capacitance in Nanocomposite Based on High-Density Polyethylene (HDPE) with Multiwalled Carbon Nanotubes (CNTs)</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mouecoucou, Raymonde ; Bonnaud, Leïla ; Dubois, Philippe</creator><creatorcontrib>Mouecoucou, Raymonde ; Bonnaud, Leïla ; Dubois, Philippe</creatorcontrib><description>Negative capacitance (NC), already observed in conducting polymer-based nanocomposites, was recently reported and evidenced at low frequencies (&lt;10 kHz) in non-conducting polymer-based nanocomposites containing conductive particles. In this contribution, we demonstrate that it is possible to produce economic high-density polyethylene (HDPE) nanocomposites exhibiting an NC effect at low frequencies via a convenient and environmentally friendly extrusion-like process by only adjusting the duration of melt-mixing. Nanocomposite materials are produced by confining a limited quantity, i.e., 4.6 wt.%, of multiwalled carbon nanotubes (CNTs) within semi-crystalline HDPE to reach the percolation threshold. With increasing melt processing time, crystallites of HDPE developing at the surface of CNTs become bigger and perturbate the connections between CNTs leading to a dramatic change in the electrical behavior of the systems. More specifically, the link between NC and current oscillations is stressed while the dependence of NC with the size of polymer crystallites is evidenced. NC tends to appear when space charge effects take place in HDPE/MWCNT interfaces, in structures with convenient crystallite sizes corresponding to 10 min of melt-mixing.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16144901</identifier><identifier>PMID: 37512176</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Capacitance ; Carbon fibers ; Communication ; Conducting polymers ; Crystallites ; Electrostatic discharges ; Graphene ; High density polyethylenes ; Humidity ; Impact strength ; Low frequencies ; Multi wall carbon nanotubes ; Nanocomposites ; Nanoparticles ; Percolation ; Polyethylene ; Polymers ; Polyvinyl alcohol ; Space charge</subject><ispartof>Materials, 2023-07, Vol.16 (14), p.4901</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-349d2911fe0fc12ee04739f0a2711f8baa107cb951e952e21a1fe8660d0496d23</citedby><cites>FETCH-LOGICAL-c407t-349d2911fe0fc12ee04739f0a2711f8baa107cb951e952e21a1fe8660d0496d23</cites><orcidid>0000-0001-6733-0133 ; 0000-0003-1534-1564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843080533/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843080533?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37512176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouecoucou, Raymonde</creatorcontrib><creatorcontrib>Bonnaud, Leïla</creatorcontrib><creatorcontrib>Dubois, Philippe</creatorcontrib><title>Negative Capacitance in Nanocomposite Based on High-Density Polyethylene (HDPE) with Multiwalled Carbon Nanotubes (CNTs)</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Negative capacitance (NC), already observed in conducting polymer-based nanocomposites, was recently reported and evidenced at low frequencies (&lt;10 kHz) in non-conducting polymer-based nanocomposites containing conductive particles. In this contribution, we demonstrate that it is possible to produce economic high-density polyethylene (HDPE) nanocomposites exhibiting an NC effect at low frequencies via a convenient and environmentally friendly extrusion-like process by only adjusting the duration of melt-mixing. Nanocomposite materials are produced by confining a limited quantity, i.e., 4.6 wt.%, of multiwalled carbon nanotubes (CNTs) within semi-crystalline HDPE to reach the percolation threshold. With increasing melt processing time, crystallites of HDPE developing at the surface of CNTs become bigger and perturbate the connections between CNTs leading to a dramatic change in the electrical behavior of the systems. More specifically, the link between NC and current oscillations is stressed while the dependence of NC with the size of polymer crystallites is evidenced. NC tends to appear when space charge effects take place in HDPE/MWCNT interfaces, in structures with convenient crystallite sizes corresponding to 10 min of melt-mixing.</description><subject>Capacitance</subject><subject>Carbon fibers</subject><subject>Communication</subject><subject>Conducting polymers</subject><subject>Crystallites</subject><subject>Electrostatic discharges</subject><subject>Graphene</subject><subject>High density polyethylenes</subject><subject>Humidity</subject><subject>Impact strength</subject><subject>Low frequencies</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Percolation</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Space charge</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkcFu1DAQhq0KRKvSCw9QWeKyRQp4Ym8SnxCkhUVqtz2Us-U4k11Xjr2NnZZ9e7LaUgpzmdHMN79m9BPyDthHziX71GsoQAjJ4IAcgZRFBlKIVy_qQ3IS4x2bgnOocvmGHPJyDjmUxRH5tcSVTvYBaa032tikvUFqPV1qH0zoNyHahPSrjtjS4OnCrtbZOfqpu6U3wW0xrbcOPdLZ4vzm4ow-2rSmV6NL9lE7Ny3VemjCXi-NDUY6q5e38ewted1pF_HkKR-Tn98ubutFdnn9_Uf95TIzgpUp40K2uQTokHUGckQmSi47pvNyalaN1sBK08g5oJznmIOe0KooWMuELNqcH5PPe93N2PTYGvRp0E5tBtvrYauCturfibdrtQoPChivoGA7hdmTwhDuR4xJ9TYadE57DGNUeSUEk7wq-YS-_w-9C-Pgp_92FGcVm_Md9WFPmSHEOGD3fA0wtTNV_TV1gk9f3v-M_rGQ_warH5vQ</recordid><startdate>20230709</startdate><enddate>20230709</enddate><creator>Mouecoucou, Raymonde</creator><creator>Bonnaud, Leïla</creator><creator>Dubois, Philippe</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6733-0133</orcidid><orcidid>https://orcid.org/0000-0003-1534-1564</orcidid></search><sort><creationdate>20230709</creationdate><title>Negative Capacitance in Nanocomposite Based on High-Density Polyethylene (HDPE) with Multiwalled Carbon Nanotubes (CNTs)</title><author>Mouecoucou, Raymonde ; Bonnaud, Leïla ; Dubois, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-349d2911fe0fc12ee04739f0a2711f8baa107cb951e952e21a1fe8660d0496d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitance</topic><topic>Carbon fibers</topic><topic>Communication</topic><topic>Conducting polymers</topic><topic>Crystallites</topic><topic>Electrostatic discharges</topic><topic>Graphene</topic><topic>High density polyethylenes</topic><topic>Humidity</topic><topic>Impact strength</topic><topic>Low frequencies</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Percolation</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Space charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouecoucou, Raymonde</creatorcontrib><creatorcontrib>Bonnaud, Leïla</creatorcontrib><creatorcontrib>Dubois, Philippe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouecoucou, Raymonde</au><au>Bonnaud, Leïla</au><au>Dubois, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative Capacitance in Nanocomposite Based on High-Density Polyethylene (HDPE) with Multiwalled Carbon Nanotubes (CNTs)</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-07-09</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>4901</spage><pages>4901-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Negative capacitance (NC), already observed in conducting polymer-based nanocomposites, was recently reported and evidenced at low frequencies (&lt;10 kHz) in non-conducting polymer-based nanocomposites containing conductive particles. In this contribution, we demonstrate that it is possible to produce economic high-density polyethylene (HDPE) nanocomposites exhibiting an NC effect at low frequencies via a convenient and environmentally friendly extrusion-like process by only adjusting the duration of melt-mixing. Nanocomposite materials are produced by confining a limited quantity, i.e., 4.6 wt.%, of multiwalled carbon nanotubes (CNTs) within semi-crystalline HDPE to reach the percolation threshold. With increasing melt processing time, crystallites of HDPE developing at the surface of CNTs become bigger and perturbate the connections between CNTs leading to a dramatic change in the electrical behavior of the systems. More specifically, the link between NC and current oscillations is stressed while the dependence of NC with the size of polymer crystallites is evidenced. NC tends to appear when space charge effects take place in HDPE/MWCNT interfaces, in structures with convenient crystallite sizes corresponding to 10 min of melt-mixing.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37512176</pmid><doi>10.3390/ma16144901</doi><orcidid>https://orcid.org/0000-0001-6733-0133</orcidid><orcidid>https://orcid.org/0000-0003-1534-1564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-07, Vol.16 (14), p.4901
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10381602
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Capacitance
Carbon fibers
Communication
Conducting polymers
Crystallites
Electrostatic discharges
Graphene
High density polyethylenes
Humidity
Impact strength
Low frequencies
Multi wall carbon nanotubes
Nanocomposites
Nanoparticles
Percolation
Polyethylene
Polymers
Polyvinyl alcohol
Space charge
title Negative Capacitance in Nanocomposite Based on High-Density Polyethylene (HDPE) with Multiwalled Carbon Nanotubes (CNTs)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20Capacitance%20in%20Nanocomposite%20Based%20on%20High-Density%20Polyethylene%20(HDPE)%20with%20Multiwalled%20Carbon%20Nanotubes%20(CNTs)&rft.jtitle=Materials&rft.au=Mouecoucou,%20Raymonde&rft.date=2023-07-09&rft.volume=16&rft.issue=14&rft.spage=4901&rft.pages=4901-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16144901&rft_dat=%3Cproquest_pubme%3E2843080533%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-349d2911fe0fc12ee04739f0a2711f8baa107cb951e952e21a1fe8660d0496d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843080533&rft_id=info:pmid/37512176&rfr_iscdi=true