Loading…
Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer
This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angl...
Saved in:
Published in: | Polymers 2023-07, Vol.15 (14), p.3029 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713 |
container_end_page | |
container_issue | 14 |
container_start_page | 3029 |
container_title | Polymers |
container_volume | 15 |
creator | Faidallah, Rawabe Fatima Hanon, Muammel M Vashist, Varun Habib, Ahmad Szakál, Zoltán Oldal, István |
description | This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens. |
doi_str_mv | 10.3390/polym15143029 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759190386</galeid><sourcerecordid>A759190386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</originalsourceid><addsrcrecordid>eNpdkc9rHCEUx6W0NCHNsdci9NLLpDr-mPFUQpKmhUAXkt4K4uoza5jRqbqF_e_rsmlIqgefvM_363s-hN5TcsaYIp-XNO1mKihnpFev0HFPBtZxJsnrZ_EROi3lgbTFhZR0eIuO2NA0nKpj9OvKe7AVJ48vQwszxIpvq4nOZIevIc1Q8w7fbswCBaeI6wbwHcQSJsCrnBbINewzHrPLbpVDrODwal8X5HfojTdTgdPH8wT9_Hp1d_Gtu_lx_f3i_KazXIjara331hDaE9bbtaUOemHBqZFQJcVoBfNC8LXolRucH6SQjrh2ZZIbZwfKTtCXg--yXc_gbOshm0kvOcwm73QyQb_MxLDR9-mPpoSNQireHD49OuT0ewul6jkUC9NkIqRt0f3IORkZGYeGfvwPfUjbHFt_e4pR0vxUo84O1L2ZQIfoU3vYtu1gDjZF8O0D9fkgFFWtCNkE3UFgcyolg38qnxK9H7Z-MezGf3je8xP9b7TsLyiapYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843106949</pqid></control><display><type>article</type><title>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Faidallah, Rawabe Fatima ; Hanon, Muammel M ; Vashist, Varun ; Habib, Ahmad ; Szakál, Zoltán ; Oldal, István</creator><creatorcontrib>Faidallah, Rawabe Fatima ; Hanon, Muammel M ; Vashist, Varun ; Habib, Ahmad ; Szakál, Zoltán ; Oldal, István</creatorcontrib><description>This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15143029</identifier><identifier>PMID: 37514419</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Angles (geometry) ; Bones ; Comparative analysis ; Design ; Elongation ; Failure ; Finite element method ; Fused deposition modeling ; Geometry ; Investigations ; Mechanical properties ; Modulus of elasticity ; Numerical analysis ; Orientation ; Polyethylene terephthalate ; Polylactic acid ; Polymers ; Quality standards ; Risers ; Software ; Strain ; Stress concentration ; Tensile properties ; Tensile strength ; Tensile tests ; Three dimensional printing</subject><ispartof>Polymers, 2023-07, Vol.15 (14), p.3029</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</citedby><cites>FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</cites><orcidid>0000-0003-4811-5723 ; 0000-0002-0159-9751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843106949/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843106949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37514419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faidallah, Rawabe Fatima</creatorcontrib><creatorcontrib>Hanon, Muammel M</creatorcontrib><creatorcontrib>Vashist, Varun</creatorcontrib><creatorcontrib>Habib, Ahmad</creatorcontrib><creatorcontrib>Szakál, Zoltán</creatorcontrib><creatorcontrib>Oldal, István</creatorcontrib><title>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Angles (geometry)</subject><subject>Bones</subject><subject>Comparative analysis</subject><subject>Design</subject><subject>Elongation</subject><subject>Failure</subject><subject>Finite element method</subject><subject>Fused deposition modeling</subject><subject>Geometry</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Numerical analysis</subject><subject>Orientation</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Quality standards</subject><subject>Risers</subject><subject>Software</subject><subject>Strain</subject><subject>Stress concentration</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Three dimensional printing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc9rHCEUx6W0NCHNsdci9NLLpDr-mPFUQpKmhUAXkt4K4uoza5jRqbqF_e_rsmlIqgefvM_363s-hN5TcsaYIp-XNO1mKihnpFev0HFPBtZxJsnrZ_EROi3lgbTFhZR0eIuO2NA0nKpj9OvKe7AVJ48vQwszxIpvq4nOZIevIc1Q8w7fbswCBaeI6wbwHcQSJsCrnBbINewzHrPLbpVDrODwal8X5HfojTdTgdPH8wT9_Hp1d_Gtu_lx_f3i_KazXIjara331hDaE9bbtaUOemHBqZFQJcVoBfNC8LXolRucH6SQjrh2ZZIbZwfKTtCXg--yXc_gbOshm0kvOcwm73QyQb_MxLDR9-mPpoSNQireHD49OuT0ewul6jkUC9NkIqRt0f3IORkZGYeGfvwPfUjbHFt_e4pR0vxUo84O1L2ZQIfoU3vYtu1gDjZF8O0D9fkgFFWtCNkE3UFgcyolg38qnxK9H7Z-MezGf3je8xP9b7TsLyiapYw</recordid><startdate>20230713</startdate><enddate>20230713</enddate><creator>Faidallah, Rawabe Fatima</creator><creator>Hanon, Muammel M</creator><creator>Vashist, Varun</creator><creator>Habib, Ahmad</creator><creator>Szakál, Zoltán</creator><creator>Oldal, István</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4811-5723</orcidid><orcidid>https://orcid.org/0000-0002-0159-9751</orcidid></search><sort><creationdate>20230713</creationdate><title>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</title><author>Faidallah, Rawabe Fatima ; Hanon, Muammel M ; Vashist, Varun ; Habib, Ahmad ; Szakál, Zoltán ; Oldal, István</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Angles (geometry)</topic><topic>Bones</topic><topic>Comparative analysis</topic><topic>Design</topic><topic>Elongation</topic><topic>Failure</topic><topic>Finite element method</topic><topic>Fused deposition modeling</topic><topic>Geometry</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Numerical analysis</topic><topic>Orientation</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Quality standards</topic><topic>Risers</topic><topic>Software</topic><topic>Strain</topic><topic>Stress concentration</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faidallah, Rawabe Fatima</creatorcontrib><creatorcontrib>Hanon, Muammel M</creatorcontrib><creatorcontrib>Vashist, Varun</creatorcontrib><creatorcontrib>Habib, Ahmad</creatorcontrib><creatorcontrib>Szakál, Zoltán</creatorcontrib><creatorcontrib>Oldal, István</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faidallah, Rawabe Fatima</au><au>Hanon, Muammel M</au><au>Vashist, Varun</au><au>Habib, Ahmad</au><au>Szakál, Zoltán</au><au>Oldal, István</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-07-13</date><risdate>2023</risdate><volume>15</volume><issue>14</issue><spage>3029</spage><pages>3029-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37514419</pmid><doi>10.3390/polym15143029</doi><orcidid>https://orcid.org/0000-0003-4811-5723</orcidid><orcidid>https://orcid.org/0000-0002-0159-9751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2023-07, Vol.15 (14), p.3029 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385694 |
source | Publicly Available Content Database; PubMed Central |
subjects | 3-D printers Additive manufacturing Angles (geometry) Bones Comparative analysis Design Elongation Failure Finite element method Fused deposition modeling Geometry Investigations Mechanical properties Modulus of elasticity Numerical analysis Orientation Polyethylene terephthalate Polylactic acid Polymers Quality standards Risers Software Strain Stress concentration Tensile properties Tensile strength Tensile tests Three dimensional printing |
title | Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Different%20Standard%20Geometry%20Shapes%20on%20the%20Tensile%20Properties%20of%203D-Printed%20Polymer&rft.jtitle=Polymers&rft.au=Faidallah,%20Rawabe%20Fatima&rft.date=2023-07-13&rft.volume=15&rft.issue=14&rft.spage=3029&rft.pages=3029-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15143029&rft_dat=%3Cgale_pubme%3EA759190386%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843106949&rft_id=info:pmid/37514419&rft_galeid=A759190386&rfr_iscdi=true |