Loading…

Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer

This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angl...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2023-07, Vol.15 (14), p.3029
Main Authors: Faidallah, Rawabe Fatima, Hanon, Muammel M, Vashist, Varun, Habib, Ahmad, Szakál, Zoltán, Oldal, István
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713
cites cdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713
container_end_page
container_issue 14
container_start_page 3029
container_title Polymers
container_volume 15
creator Faidallah, Rawabe Fatima
Hanon, Muammel M
Vashist, Varun
Habib, Ahmad
Szakál, Zoltán
Oldal, István
description This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens.
doi_str_mv 10.3390/polym15143029
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759190386</galeid><sourcerecordid>A759190386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</originalsourceid><addsrcrecordid>eNpdkc9rHCEUx6W0NCHNsdci9NLLpDr-mPFUQpKmhUAXkt4K4uoza5jRqbqF_e_rsmlIqgefvM_363s-hN5TcsaYIp-XNO1mKihnpFev0HFPBtZxJsnrZ_EROi3lgbTFhZR0eIuO2NA0nKpj9OvKe7AVJ48vQwszxIpvq4nOZIevIc1Q8w7fbswCBaeI6wbwHcQSJsCrnBbINewzHrPLbpVDrODwal8X5HfojTdTgdPH8wT9_Hp1d_Gtu_lx_f3i_KazXIjara331hDaE9bbtaUOemHBqZFQJcVoBfNC8LXolRucH6SQjrh2ZZIbZwfKTtCXg--yXc_gbOshm0kvOcwm73QyQb_MxLDR9-mPpoSNQireHD49OuT0ewul6jkUC9NkIqRt0f3IORkZGYeGfvwPfUjbHFt_e4pR0vxUo84O1L2ZQIfoU3vYtu1gDjZF8O0D9fkgFFWtCNkE3UFgcyolg38qnxK9H7Z-MezGf3je8xP9b7TsLyiapYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843106949</pqid></control><display><type>article</type><title>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Faidallah, Rawabe Fatima ; Hanon, Muammel M ; Vashist, Varun ; Habib, Ahmad ; Szakál, Zoltán ; Oldal, István</creator><creatorcontrib>Faidallah, Rawabe Fatima ; Hanon, Muammel M ; Vashist, Varun ; Habib, Ahmad ; Szakál, Zoltán ; Oldal, István</creatorcontrib><description>This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15143029</identifier><identifier>PMID: 37514419</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Angles (geometry) ; Bones ; Comparative analysis ; Design ; Elongation ; Failure ; Finite element method ; Fused deposition modeling ; Geometry ; Investigations ; Mechanical properties ; Modulus of elasticity ; Numerical analysis ; Orientation ; Polyethylene terephthalate ; Polylactic acid ; Polymers ; Quality standards ; Risers ; Software ; Strain ; Stress concentration ; Tensile properties ; Tensile strength ; Tensile tests ; Three dimensional printing</subject><ispartof>Polymers, 2023-07, Vol.15 (14), p.3029</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</citedby><cites>FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</cites><orcidid>0000-0003-4811-5723 ; 0000-0002-0159-9751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843106949/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843106949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37514419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faidallah, Rawabe Fatima</creatorcontrib><creatorcontrib>Hanon, Muammel M</creatorcontrib><creatorcontrib>Vashist, Varun</creatorcontrib><creatorcontrib>Habib, Ahmad</creatorcontrib><creatorcontrib>Szakál, Zoltán</creatorcontrib><creatorcontrib>Oldal, István</creatorcontrib><title>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Angles (geometry)</subject><subject>Bones</subject><subject>Comparative analysis</subject><subject>Design</subject><subject>Elongation</subject><subject>Failure</subject><subject>Finite element method</subject><subject>Fused deposition modeling</subject><subject>Geometry</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Numerical analysis</subject><subject>Orientation</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Quality standards</subject><subject>Risers</subject><subject>Software</subject><subject>Strain</subject><subject>Stress concentration</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Three dimensional printing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc9rHCEUx6W0NCHNsdci9NLLpDr-mPFUQpKmhUAXkt4K4uoza5jRqbqF_e_rsmlIqgefvM_363s-hN5TcsaYIp-XNO1mKihnpFev0HFPBtZxJsnrZ_EROi3lgbTFhZR0eIuO2NA0nKpj9OvKe7AVJ48vQwszxIpvq4nOZIevIc1Q8w7fbswCBaeI6wbwHcQSJsCrnBbINewzHrPLbpVDrODwal8X5HfojTdTgdPH8wT9_Hp1d_Gtu_lx_f3i_KazXIjara331hDaE9bbtaUOemHBqZFQJcVoBfNC8LXolRucH6SQjrh2ZZIbZwfKTtCXg--yXc_gbOshm0kvOcwm73QyQb_MxLDR9-mPpoSNQireHD49OuT0ewul6jkUC9NkIqRt0f3IORkZGYeGfvwPfUjbHFt_e4pR0vxUo84O1L2ZQIfoU3vYtu1gDjZF8O0D9fkgFFWtCNkE3UFgcyolg38qnxK9H7Z-MezGf3je8xP9b7TsLyiapYw</recordid><startdate>20230713</startdate><enddate>20230713</enddate><creator>Faidallah, Rawabe Fatima</creator><creator>Hanon, Muammel M</creator><creator>Vashist, Varun</creator><creator>Habib, Ahmad</creator><creator>Szakál, Zoltán</creator><creator>Oldal, István</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4811-5723</orcidid><orcidid>https://orcid.org/0000-0002-0159-9751</orcidid></search><sort><creationdate>20230713</creationdate><title>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</title><author>Faidallah, Rawabe Fatima ; Hanon, Muammel M ; Vashist, Varun ; Habib, Ahmad ; Szakál, Zoltán ; Oldal, István</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Angles (geometry)</topic><topic>Bones</topic><topic>Comparative analysis</topic><topic>Design</topic><topic>Elongation</topic><topic>Failure</topic><topic>Finite element method</topic><topic>Fused deposition modeling</topic><topic>Geometry</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Numerical analysis</topic><topic>Orientation</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Quality standards</topic><topic>Risers</topic><topic>Software</topic><topic>Strain</topic><topic>Stress concentration</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faidallah, Rawabe Fatima</creatorcontrib><creatorcontrib>Hanon, Muammel M</creatorcontrib><creatorcontrib>Vashist, Varun</creatorcontrib><creatorcontrib>Habib, Ahmad</creatorcontrib><creatorcontrib>Szakál, Zoltán</creatorcontrib><creatorcontrib>Oldal, István</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faidallah, Rawabe Fatima</au><au>Hanon, Muammel M</au><au>Vashist, Varun</au><au>Habib, Ahmad</au><au>Szakál, Zoltán</au><au>Oldal, István</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-07-13</date><risdate>2023</risdate><volume>15</volume><issue>14</issue><spage>3029</spage><pages>3029-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study presents a comparative analysis of the tensile properties of 3D-printed polymer specimens with different standard geometry shapes. The objective is to assess the influence of printing orientation and geometry on the mechanical performance. Rectangular-shaped ASTM D3039 specimens with angles of 0°, 15°, and 90° are compared to various tensile test specimens based on ASTM and ISO standards. All specimens are fabricated using polyethylene terephthalate glycol (PETG) material through fused deposition modeling (FDM). Two printing orientations, flat and on-edge, are investigated, and tensile strength, elastic modulus, strain, and elongation at break are measured. The study examines the weak spot commonly found at the neck of the specimens and evaluates the broken areas. Additionally, a numerical analysis using the finite element method (FEM) is performed to identify stress risers' locations in each specimen type. Experimental results show that the ASTM D3039-0° specimen printed in the on-edge orientation exhibits the highest tensile properties, while the flat orientation yields the best results in terms of the broken area. The ISO 527-2 specimens consistently display lower tensile properties, irrespective of the printing orientation. The study highlights the enhanced tensile properties achieved with the rectangular shape. Specifically, the tensile strength of ASTM D3039-0° was 17.87% and 21% higher than that of the ISO 527 geometry shape for the flat and on-edge orientations, respectively. The numerical analysis indicated that the ISO 527-2 specimen had either no or minimal stress raisers, and the higher stresses observed in the narrow section were isolated from the gripping location. The findings contribute to understanding the relationship between standard geometry shapes, printing orientation, and the resulting tensile properties of 3D-printed polymer specimens.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37514419</pmid><doi>10.3390/polym15143029</doi><orcidid>https://orcid.org/0000-0003-4811-5723</orcidid><orcidid>https://orcid.org/0000-0002-0159-9751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-07, Vol.15 (14), p.3029
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385694
source Publicly Available Content Database; PubMed Central
subjects 3-D printers
Additive manufacturing
Angles (geometry)
Bones
Comparative analysis
Design
Elongation
Failure
Finite element method
Fused deposition modeling
Geometry
Investigations
Mechanical properties
Modulus of elasticity
Numerical analysis
Orientation
Polyethylene terephthalate
Polylactic acid
Polymers
Quality standards
Risers
Software
Strain
Stress concentration
Tensile properties
Tensile strength
Tensile tests
Three dimensional printing
title Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Different%20Standard%20Geometry%20Shapes%20on%20the%20Tensile%20Properties%20of%203D-Printed%20Polymer&rft.jtitle=Polymers&rft.au=Faidallah,%20Rawabe%20Fatima&rft.date=2023-07-13&rft.volume=15&rft.issue=14&rft.spage=3029&rft.pages=3029-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15143029&rft_dat=%3Cgale_pubme%3EA759190386%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-bcffca012032cbc1de25ced98019658c53f554b529d7df7656d0db52364adc713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843106949&rft_id=info:pmid/37514419&rft_galeid=A759190386&rfr_iscdi=true