Loading…

Image Registration in Longitudinal Bone Assessment Using Computed Tomography

Purpose of Review Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the...

Full description

Saved in:
Bibliographic Details
Published in:Current osteoporosis reports 2023-08, Vol.21 (4), p.372-385
Main Authors: Liu, Han, Durongbhan, Pholpat, Davey, Catherine E., Stok, Kathryn S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43
container_end_page 385
container_issue 4
container_start_page 372
container_title Current osteoporosis reports
container_volume 21
creator Liu, Han
Durongbhan, Pholpat
Davey, Catherine E.
Stok, Kathryn S.
description Purpose of Review Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes. Recent Findings Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies. Summary In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time.
doi_str_mv 10.1007/s11914-023-00795-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10393902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822377914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaL4sfoHPEiPXqrJJE3ak-jiFywIoueQbbM10iZrphX23xvdVfTiKRPemzcz7xFyzOgZo1SdI2MVEzkFnqdvVeRyi-yzQogcQLDtTc1KxffIAeIrpQBM8F2yxxVIAZztk9l9b1qbPdrW4RDN4ILPnM9mwbduGBvnTZddBW-zS0SL2Fs_ZM_ofJtNQ78cB9tkT6EPbTTLl9Uh2VmYDu3R5p2Q55vrp-ldPnu4vZ9ezvKaV-WQgzKFmFurZAGFkjUrTQmcNqCgkrQWUtiEGllVjSkFowvFSyWhnPN0Fp8LPiEXa93lOO9tU6eloun0MrrexJUOxum_iHcvug3vmlFe8SoZNiGnG4UY3kaLg-4d1rbrjLdhRA0lAFcq2ZuosKbWMSBGu_iZw6j-zEGvc9BJVn_loGVqOvm94U_Lt_GJwNcETJBvbdSvYYzJbfxP9gOwMpOU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822377914</pqid></control><display><type>article</type><title>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</title><source>Springer Nature</source><creator>Liu, Han ; Durongbhan, Pholpat ; Davey, Catherine E. ; Stok, Kathryn S.</creator><creatorcontrib>Liu, Han ; Durongbhan, Pholpat ; Davey, Catherine E. ; Stok, Kathryn S.</creatorcontrib><description>Purpose of Review Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes. Recent Findings Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies. Summary In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time.</description><identifier>ISSN: 1544-1873</identifier><identifier>ISSN: 1544-2241</identifier><identifier>EISSN: 1544-2241</identifier><identifier>DOI: 10.1007/s11914-023-00795-6</identifier><identifier>PMID: 37264231</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bone and Bones - diagnostic imaging ; Epidemiology ; Humans ; Image Processing, Computer-Assisted ; Medicine ; Medicine &amp; Public Health ; Musculoskeletal Diseases ; Orthopedics ; Tomography, X-Ray Computed ; Topical Collection on Imaging</subject><ispartof>Current osteoporosis reports, 2023-08, Vol.21 (4), p.372-385</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43</cites><orcidid>0000-0001-7487-0613 ; 0000-0002-5672-7941 ; 0000-0002-5164-3482 ; 0000-0002-0522-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37264231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Durongbhan, Pholpat</creatorcontrib><creatorcontrib>Davey, Catherine E.</creatorcontrib><creatorcontrib>Stok, Kathryn S.</creatorcontrib><title>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</title><title>Current osteoporosis reports</title><addtitle>Curr Osteoporos Rep</addtitle><addtitle>Curr Osteoporos Rep</addtitle><description>Purpose of Review Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes. Recent Findings Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies. Summary In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time.</description><subject>Algorithms</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Musculoskeletal Diseases</subject><subject>Orthopedics</subject><subject>Tomography, X-Ray Computed</subject><subject>Topical Collection on Imaging</subject><issn>1544-1873</issn><issn>1544-2241</issn><issn>1544-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LxDAQDaL4sfoHPEiPXqrJJE3ak-jiFywIoueQbbM10iZrphX23xvdVfTiKRPemzcz7xFyzOgZo1SdI2MVEzkFnqdvVeRyi-yzQogcQLDtTc1KxffIAeIrpQBM8F2yxxVIAZztk9l9b1qbPdrW4RDN4ILPnM9mwbduGBvnTZddBW-zS0SL2Fs_ZM_ofJtNQ78cB9tkT6EPbTTLl9Uh2VmYDu3R5p2Q55vrp-ldPnu4vZ9ezvKaV-WQgzKFmFurZAGFkjUrTQmcNqCgkrQWUtiEGllVjSkFowvFSyWhnPN0Fp8LPiEXa93lOO9tU6eloun0MrrexJUOxum_iHcvug3vmlFe8SoZNiGnG4UY3kaLg-4d1rbrjLdhRA0lAFcq2ZuosKbWMSBGu_iZw6j-zEGvc9BJVn_loGVqOvm94U_Lt_GJwNcETJBvbdSvYYzJbfxP9gOwMpOU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Han</creator><creator>Durongbhan, Pholpat</creator><creator>Davey, Catherine E.</creator><creator>Stok, Kathryn S.</creator><general>Springer US</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7487-0613</orcidid><orcidid>https://orcid.org/0000-0002-5672-7941</orcidid><orcidid>https://orcid.org/0000-0002-5164-3482</orcidid><orcidid>https://orcid.org/0000-0002-0522-4180</orcidid></search><sort><creationdate>20230801</creationdate><title>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</title><author>Liu, Han ; Durongbhan, Pholpat ; Davey, Catherine E. ; Stok, Kathryn S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Musculoskeletal Diseases</topic><topic>Orthopedics</topic><topic>Tomography, X-Ray Computed</topic><topic>Topical Collection on Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Durongbhan, Pholpat</creatorcontrib><creatorcontrib>Davey, Catherine E.</creatorcontrib><creatorcontrib>Stok, Kathryn S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current osteoporosis reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Han</au><au>Durongbhan, Pholpat</au><au>Davey, Catherine E.</au><au>Stok, Kathryn S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</atitle><jtitle>Current osteoporosis reports</jtitle><stitle>Curr Osteoporos Rep</stitle><addtitle>Curr Osteoporos Rep</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>21</volume><issue>4</issue><spage>372</spage><epage>385</epage><pages>372-385</pages><issn>1544-1873</issn><issn>1544-2241</issn><eissn>1544-2241</eissn><abstract>Purpose of Review Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes. Recent Findings Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies. Summary In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37264231</pmid><doi>10.1007/s11914-023-00795-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7487-0613</orcidid><orcidid>https://orcid.org/0000-0002-5672-7941</orcidid><orcidid>https://orcid.org/0000-0002-5164-3482</orcidid><orcidid>https://orcid.org/0000-0002-0522-4180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1544-1873
ispartof Current osteoporosis reports, 2023-08, Vol.21 (4), p.372-385
issn 1544-1873
1544-2241
1544-2241
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10393902
source Springer Nature
subjects Algorithms
Bone and Bones - diagnostic imaging
Epidemiology
Humans
Image Processing, Computer-Assisted
Medicine
Medicine & Public Health
Musculoskeletal Diseases
Orthopedics
Tomography, X-Ray Computed
Topical Collection on Imaging
title Image Registration in Longitudinal Bone Assessment Using Computed Tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Registration%20in%20Longitudinal%20Bone%20Assessment%20Using%20Computed%20Tomography&rft.jtitle=Current%20osteoporosis%20reports&rft.au=Liu,%20Han&rft.date=2023-08-01&rft.volume=21&rft.issue=4&rft.spage=372&rft.epage=385&rft.pages=372-385&rft.issn=1544-1873&rft.eissn=1544-2241&rft_id=info:doi/10.1007/s11914-023-00795-6&rft_dat=%3Cproquest_pubme%3E2822377914%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822377914&rft_id=info:pmid/37264231&rfr_iscdi=true