Loading…
Image Registration in Longitudinal Bone Assessment Using Computed Tomography
Purpose of Review Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the...
Saved in:
Published in: | Current osteoporosis reports 2023-08, Vol.21 (4), p.372-385 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43 |
container_end_page | 385 |
container_issue | 4 |
container_start_page | 372 |
container_title | Current osteoporosis reports |
container_volume | 21 |
creator | Liu, Han Durongbhan, Pholpat Davey, Catherine E. Stok, Kathryn S. |
description | Purpose of Review
Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes.
Recent Findings
Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies.
Summary
In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time. |
doi_str_mv | 10.1007/s11914-023-00795-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10393902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822377914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaL4sfoHPEiPXqrJJE3ak-jiFywIoueQbbM10iZrphX23xvdVfTiKRPemzcz7xFyzOgZo1SdI2MVEzkFnqdvVeRyi-yzQogcQLDtTc1KxffIAeIrpQBM8F2yxxVIAZztk9l9b1qbPdrW4RDN4ILPnM9mwbduGBvnTZddBW-zS0SL2Fs_ZM_ofJtNQ78cB9tkT6EPbTTLl9Uh2VmYDu3R5p2Q55vrp-ldPnu4vZ9ezvKaV-WQgzKFmFurZAGFkjUrTQmcNqCgkrQWUtiEGllVjSkFowvFSyWhnPN0Fp8LPiEXa93lOO9tU6eloun0MrrexJUOxum_iHcvug3vmlFe8SoZNiGnG4UY3kaLg-4d1rbrjLdhRA0lAFcq2ZuosKbWMSBGu_iZw6j-zEGvc9BJVn_loGVqOvm94U_Lt_GJwNcETJBvbdSvYYzJbfxP9gOwMpOU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822377914</pqid></control><display><type>article</type><title>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</title><source>Springer Nature</source><creator>Liu, Han ; Durongbhan, Pholpat ; Davey, Catherine E. ; Stok, Kathryn S.</creator><creatorcontrib>Liu, Han ; Durongbhan, Pholpat ; Davey, Catherine E. ; Stok, Kathryn S.</creatorcontrib><description>Purpose of Review
Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes.
Recent Findings
Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies.
Summary
In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time.</description><identifier>ISSN: 1544-1873</identifier><identifier>ISSN: 1544-2241</identifier><identifier>EISSN: 1544-2241</identifier><identifier>DOI: 10.1007/s11914-023-00795-6</identifier><identifier>PMID: 37264231</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bone and Bones - diagnostic imaging ; Epidemiology ; Humans ; Image Processing, Computer-Assisted ; Medicine ; Medicine & Public Health ; Musculoskeletal Diseases ; Orthopedics ; Tomography, X-Ray Computed ; Topical Collection on Imaging</subject><ispartof>Current osteoporosis reports, 2023-08, Vol.21 (4), p.372-385</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43</cites><orcidid>0000-0001-7487-0613 ; 0000-0002-5672-7941 ; 0000-0002-5164-3482 ; 0000-0002-0522-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37264231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Durongbhan, Pholpat</creatorcontrib><creatorcontrib>Davey, Catherine E.</creatorcontrib><creatorcontrib>Stok, Kathryn S.</creatorcontrib><title>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</title><title>Current osteoporosis reports</title><addtitle>Curr Osteoporos Rep</addtitle><addtitle>Curr Osteoporos Rep</addtitle><description>Purpose of Review
Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes.
Recent Findings
Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies.
Summary
In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time.</description><subject>Algorithms</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Musculoskeletal Diseases</subject><subject>Orthopedics</subject><subject>Tomography, X-Ray Computed</subject><subject>Topical Collection on Imaging</subject><issn>1544-1873</issn><issn>1544-2241</issn><issn>1544-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LxDAQDaL4sfoHPEiPXqrJJE3ak-jiFywIoueQbbM10iZrphX23xvdVfTiKRPemzcz7xFyzOgZo1SdI2MVEzkFnqdvVeRyi-yzQogcQLDtTc1KxffIAeIrpQBM8F2yxxVIAZztk9l9b1qbPdrW4RDN4ILPnM9mwbduGBvnTZddBW-zS0SL2Fs_ZM_ofJtNQ78cB9tkT6EPbTTLl9Uh2VmYDu3R5p2Q55vrp-ldPnu4vZ9ezvKaV-WQgzKFmFurZAGFkjUrTQmcNqCgkrQWUtiEGllVjSkFowvFSyWhnPN0Fp8LPiEXa93lOO9tU6eloun0MrrexJUOxum_iHcvug3vmlFe8SoZNiGnG4UY3kaLg-4d1rbrjLdhRA0lAFcq2ZuosKbWMSBGu_iZw6j-zEGvc9BJVn_loGVqOvm94U_Lt_GJwNcETJBvbdSvYYzJbfxP9gOwMpOU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Han</creator><creator>Durongbhan, Pholpat</creator><creator>Davey, Catherine E.</creator><creator>Stok, Kathryn S.</creator><general>Springer US</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7487-0613</orcidid><orcidid>https://orcid.org/0000-0002-5672-7941</orcidid><orcidid>https://orcid.org/0000-0002-5164-3482</orcidid><orcidid>https://orcid.org/0000-0002-0522-4180</orcidid></search><sort><creationdate>20230801</creationdate><title>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</title><author>Liu, Han ; Durongbhan, Pholpat ; Davey, Catherine E. ; Stok, Kathryn S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Musculoskeletal Diseases</topic><topic>Orthopedics</topic><topic>Tomography, X-Ray Computed</topic><topic>Topical Collection on Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Durongbhan, Pholpat</creatorcontrib><creatorcontrib>Davey, Catherine E.</creatorcontrib><creatorcontrib>Stok, Kathryn S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current osteoporosis reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Han</au><au>Durongbhan, Pholpat</au><au>Davey, Catherine E.</au><au>Stok, Kathryn S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Registration in Longitudinal Bone Assessment Using Computed Tomography</atitle><jtitle>Current osteoporosis reports</jtitle><stitle>Curr Osteoporos Rep</stitle><addtitle>Curr Osteoporos Rep</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>21</volume><issue>4</issue><spage>372</spage><epage>385</epage><pages>372-385</pages><issn>1544-1873</issn><issn>1544-2241</issn><eissn>1544-2241</eissn><abstract>Purpose of Review
Rigid image registration is an important image processing tool for the assessment of musculoskeletal chronic disease. In this paper, we critically review applications of rigid image registration in terms of similarity measurement methods over the past three years (2019–2022) in the context of monitoring longitudinal changes to bone microstructure and mechanical properties using computed tomography. This review identifies critical assumptions and trade-offs underlying different similarity measurement methods used in image registration and demonstrates the effect of using different similarity measures on registration outcomes.
Recent Findings
Image registration has been used in recent studies for: correcting positional shifts between longitudinal scans to quantify changes to bone microstructural and mechanical properties over time, developing registration-based workflows for longitudinal assessment of bone properties in pre-clinical and clinical studies, and developing and validating registration techniques for longitudinal studies.
Summary
In evaluating the recent literature, it was found that the assumptions at the root of different similarity measures used in rigid image registration are not always confirmed and reported. Each similarity measurement has its advantages and disadvantages, as well as underlying assumptions. Breaking these assumptions can lead to poor and inaccurate registration results. Thus, care must be taken with regards to the choice of similarity measurement and interpretation of results. We propose that understanding and verifying the assumptions of similarity measurements will enable more accurate and efficient quantitative assessments of structural changes over time.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37264231</pmid><doi>10.1007/s11914-023-00795-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7487-0613</orcidid><orcidid>https://orcid.org/0000-0002-5672-7941</orcidid><orcidid>https://orcid.org/0000-0002-5164-3482</orcidid><orcidid>https://orcid.org/0000-0002-0522-4180</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1544-1873 |
ispartof | Current osteoporosis reports, 2023-08, Vol.21 (4), p.372-385 |
issn | 1544-1873 1544-2241 1544-2241 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10393902 |
source | Springer Nature |
subjects | Algorithms Bone and Bones - diagnostic imaging Epidemiology Humans Image Processing, Computer-Assisted Medicine Medicine & Public Health Musculoskeletal Diseases Orthopedics Tomography, X-Ray Computed Topical Collection on Imaging |
title | Image Registration in Longitudinal Bone Assessment Using Computed Tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Registration%20in%20Longitudinal%20Bone%20Assessment%20Using%20Computed%20Tomography&rft.jtitle=Current%20osteoporosis%20reports&rft.au=Liu,%20Han&rft.date=2023-08-01&rft.volume=21&rft.issue=4&rft.spage=372&rft.epage=385&rft.pages=372-385&rft.issn=1544-1873&rft.eissn=1544-2241&rft_id=info:doi/10.1007/s11914-023-00795-6&rft_dat=%3Cproquest_pubme%3E2822377914%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-27a54bee7652576c18a8230d272960c464ebeea699da8410f7387628b32413b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822377914&rft_id=info:pmid/37264231&rfr_iscdi=true |