Loading…

3D integration enables ultralow-noise isolator-free lasers in silicon photonics

Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects 1 – 5 . However, in optical systems such as microwave synthesizers 6 , optical gyroscopes 7 and atomic clocks 8 , photonic integrated circuits are still considered inferior solutions...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2023-08, Vol.620 (7972), p.78-85
Main Authors: Xiang, Chao, Jin, Warren, Terra, Osama, Dong, Bozhang, Wang, Heming, Wu, Lue, Guo, Joel, Morin, Theodore J., Hughes, Eamonn, Peters, Jonathan, Ji, Qing-Xin, Feshali, Avi, Paniccia, Mario, Vahala, Kerry J., Bowers, John E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313
cites cdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313
container_end_page 85
container_issue 7972
container_start_page 78
container_title Nature (London)
container_volume 620
creator Xiang, Chao
Jin, Warren
Terra, Osama
Dong, Bozhang
Wang, Heming
Wu, Lue
Guo, Joel
Morin, Theodore J.
Hughes, Eamonn
Peters, Jonathan
Ji, Qing-Xin
Feshali, Avi
Paniccia, Mario
Vahala, Kerry J.
Bowers, John E.
description Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects 1 – 5 . However, in optical systems such as microwave synthesizers 6 , optical gyroscopes 7 and atomic clocks 8 , photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon. Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.
doi_str_mv 10.1038/s41586-023-06251-w
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10396957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845656724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhS0EIkPgD3BALXHhYvBu9wmhsEqRcsndcndXTxx57MHVzYh_j4cJYTlwqkN979XyCHnO2WvOpHuDimtnKBOSMiM0p4cHZMOVNVQZZx-SDWPCUeakOSNPEG8ZY5pb9ZicSaulcFxsyJV838W8wLaGJZbcQQ5DAuzWtNSQyoHmEhG6iCWFpVQ6V4AuBYSKTddhTHFssv1NWUqOIz4lj-aQEJ7d1XNy_fHD9cVnenn16cvFu0s6KqsXambHpOUwjYMQw9xbJcBZNTAXRt5LZ1hQMgjVq8kOVospDHYyerAjuElyeU7enmz367BrLpCP6_p9jbtQv_sSov-7k-ON35Zvvj2uN722zeHVnUMtX1fAxe8ijpBSyFBW9MIpbbSxQjX05T_obVlrbucdKSMZM1w0SpyosRbECvP9Npwdxzp_ysu3vPzPvPyhiV78ece95FdADZAnAFsrb6H-nv0f2x_p-KJR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846300612</pqid></control><display><type>article</type><title>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</title><source>Nature Journals</source><creator>Xiang, Chao ; Jin, Warren ; Terra, Osama ; Dong, Bozhang ; Wang, Heming ; Wu, Lue ; Guo, Joel ; Morin, Theodore J. ; Hughes, Eamonn ; Peters, Jonathan ; Ji, Qing-Xin ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creator><creatorcontrib>Xiang, Chao ; Jin, Warren ; Terra, Osama ; Dong, Bozhang ; Wang, Heming ; Wu, Lue ; Guo, Joel ; Morin, Theodore J. ; Hughes, Eamonn ; Peters, Jonathan ; Ji, Qing-Xin ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creatorcontrib><description>Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects 1 – 5 . However, in optical systems such as microwave synthesizers 6 , optical gyroscopes 7 and atomic clocks 8 , photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon. Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06251-w</identifier><identifier>PMID: 37532812</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1093 ; 639/624/1075/1079 ; 639/624/399/1097 ; 639/624/399/1099 ; Circuit reliability ; Complex systems ; Decibels ; Design ; Humanities and Social Sciences ; Integrated circuits ; Isolators ; Lasers ; Microwaves ; multidisciplinary ; Optics ; Optics and Photonics ; Phase noise ; Photonics ; Photons ; Power consumption ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Semiconductor lasers ; Semiconductors ; Silicon ; Silicon nitride ; Synthesis ; Synthesizers ; Systems stability ; Waveguides</subject><ispartof>Nature (London), 2023-08, Vol.620 (7972), p.78-85</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Aug 3, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</citedby><cites>FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</cites><orcidid>0000-0002-7081-0346 ; 0000-0003-4270-8296 ; 0000-0003-0203-5170 ; 0000-0002-4297-7982 ; 0000-0002-6336-8350 ; 0000-0003-1783-1380 ; 0000-0002-7503-7057 ; 0000-0003-3861-0624 ; 0000-0001-5826-6723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37532812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Terra, Osama</creatorcontrib><creatorcontrib>Dong, Bozhang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Morin, Theodore J.</creatorcontrib><creatorcontrib>Hughes, Eamonn</creatorcontrib><creatorcontrib>Peters, Jonathan</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><title>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects 1 – 5 . However, in optical systems such as microwave synthesizers 6 , optical gyroscopes 7 and atomic clocks 8 , photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon. Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.</description><subject>639/624/1020/1093</subject><subject>639/624/1075/1079</subject><subject>639/624/399/1097</subject><subject>639/624/399/1099</subject><subject>Circuit reliability</subject><subject>Complex systems</subject><subject>Decibels</subject><subject>Design</subject><subject>Humanities and Social Sciences</subject><subject>Integrated circuits</subject><subject>Isolators</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Optics and Photonics</subject><subject>Phase noise</subject><subject>Photonics</subject><subject>Photons</subject><subject>Power consumption</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor lasers</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Synthesis</subject><subject>Synthesizers</subject><subject>Systems stability</subject><subject>Waveguides</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUlvFDEQhS0EIkPgD3BALXHhYvBu9wmhsEqRcsndcndXTxx57MHVzYh_j4cJYTlwqkN979XyCHnO2WvOpHuDimtnKBOSMiM0p4cHZMOVNVQZZx-SDWPCUeakOSNPEG8ZY5pb9ZicSaulcFxsyJV838W8wLaGJZbcQQ5DAuzWtNSQyoHmEhG6iCWFpVQ6V4AuBYSKTddhTHFssv1NWUqOIz4lj-aQEJ7d1XNy_fHD9cVnenn16cvFu0s6KqsXambHpOUwjYMQw9xbJcBZNTAXRt5LZ1hQMgjVq8kOVospDHYyerAjuElyeU7enmz367BrLpCP6_p9jbtQv_sSov-7k-ON35Zvvj2uN722zeHVnUMtX1fAxe8ijpBSyFBW9MIpbbSxQjX05T_obVlrbucdKSMZM1w0SpyosRbECvP9Npwdxzp_ysu3vPzPvPyhiV78ece95FdADZAnAFsrb6H-nv0f2x_p-KJR</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>Xiang, Chao</creator><creator>Jin, Warren</creator><creator>Terra, Osama</creator><creator>Dong, Bozhang</creator><creator>Wang, Heming</creator><creator>Wu, Lue</creator><creator>Guo, Joel</creator><creator>Morin, Theodore J.</creator><creator>Hughes, Eamonn</creator><creator>Peters, Jonathan</creator><creator>Ji, Qing-Xin</creator><creator>Feshali, Avi</creator><creator>Paniccia, Mario</creator><creator>Vahala, Kerry J.</creator><creator>Bowers, John E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7081-0346</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0203-5170</orcidid><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0002-6336-8350</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid><orcidid>https://orcid.org/0000-0001-5826-6723</orcidid></search><sort><creationdate>20230803</creationdate><title>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</title><author>Xiang, Chao ; Jin, Warren ; Terra, Osama ; Dong, Bozhang ; Wang, Heming ; Wu, Lue ; Guo, Joel ; Morin, Theodore J. ; Hughes, Eamonn ; Peters, Jonathan ; Ji, Qing-Xin ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1020/1093</topic><topic>639/624/1075/1079</topic><topic>639/624/399/1097</topic><topic>639/624/399/1099</topic><topic>Circuit reliability</topic><topic>Complex systems</topic><topic>Decibels</topic><topic>Design</topic><topic>Humanities and Social Sciences</topic><topic>Integrated circuits</topic><topic>Isolators</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Optics and Photonics</topic><topic>Phase noise</topic><topic>Photonics</topic><topic>Photons</topic><topic>Power consumption</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor lasers</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Synthesis</topic><topic>Synthesizers</topic><topic>Systems stability</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Terra, Osama</creatorcontrib><creatorcontrib>Dong, Bozhang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Morin, Theodore J.</creatorcontrib><creatorcontrib>Hughes, Eamonn</creatorcontrib><creatorcontrib>Peters, Jonathan</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Chao</au><au>Jin, Warren</au><au>Terra, Osama</au><au>Dong, Bozhang</au><au>Wang, Heming</au><au>Wu, Lue</au><au>Guo, Joel</au><au>Morin, Theodore J.</au><au>Hughes, Eamonn</au><au>Peters, Jonathan</au><au>Ji, Qing-Xin</au><au>Feshali, Avi</au><au>Paniccia, Mario</au><au>Vahala, Kerry J.</au><au>Bowers, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-08-03</date><risdate>2023</risdate><volume>620</volume><issue>7972</issue><spage>78</spage><epage>85</epage><pages>78-85</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects 1 – 5 . However, in optical systems such as microwave synthesizers 6 , optical gyroscopes 7 and atomic clocks 8 , photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon. Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37532812</pmid><doi>10.1038/s41586-023-06251-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7081-0346</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0203-5170</orcidid><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0002-6336-8350</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid><orcidid>https://orcid.org/0000-0001-5826-6723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-08, Vol.620 (7972), p.78-85
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10396957
source Nature Journals
subjects 639/624/1020/1093
639/624/1075/1079
639/624/399/1097
639/624/399/1099
Circuit reliability
Complex systems
Decibels
Design
Humanities and Social Sciences
Integrated circuits
Isolators
Lasers
Microwaves
multidisciplinary
Optics
Optics and Photonics
Phase noise
Photonics
Photons
Power consumption
Reproducibility of Results
Science
Science (multidisciplinary)
Semiconductor lasers
Semiconductors
Silicon
Silicon nitride
Synthesis
Synthesizers
Systems stability
Waveguides
title 3D integration enables ultralow-noise isolator-free lasers in silicon photonics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20integration%20enables%20ultralow-noise%20isolator-free%20lasers%20in%20silicon%20photonics&rft.jtitle=Nature%20(London)&rft.au=Xiang,%20Chao&rft.date=2023-08-03&rft.volume=620&rft.issue=7972&rft.spage=78&rft.epage=85&rft.pages=78-85&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06251-w&rft_dat=%3Cproquest_pubme%3E2845656724%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2846300612&rft_id=info:pmid/37532812&rfr_iscdi=true