Loading…
3D integration enables ultralow-noise isolator-free lasers in silicon photonics
Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects 1 – 5 . However, in optical systems such as microwave synthesizers 6 , optical gyroscopes 7 and atomic clocks 8 , photonic integrated circuits are still considered inferior solutions...
Saved in:
Published in: | Nature (London) 2023-08, Vol.620 (7972), p.78-85 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313 |
container_end_page | 85 |
container_issue | 7972 |
container_start_page | 78 |
container_title | Nature (London) |
container_volume | 620 |
creator | Xiang, Chao Jin, Warren Terra, Osama Dong, Bozhang Wang, Heming Wu, Lue Guo, Joel Morin, Theodore J. Hughes, Eamonn Peters, Jonathan Ji, Qing-Xin Feshali, Avi Paniccia, Mario Vahala, Kerry J. Bowers, John E. |
description | Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects
1
–
5
. However, in optical systems such as microwave synthesizers
6
, optical gyroscopes
7
and atomic clocks
8
, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.
Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators. |
doi_str_mv | 10.1038/s41586-023-06251-w |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10396957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845656724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhS0EIkPgD3BALXHhYvBu9wmhsEqRcsndcndXTxx57MHVzYh_j4cJYTlwqkN979XyCHnO2WvOpHuDimtnKBOSMiM0p4cHZMOVNVQZZx-SDWPCUeakOSNPEG8ZY5pb9ZicSaulcFxsyJV838W8wLaGJZbcQQ5DAuzWtNSQyoHmEhG6iCWFpVQ6V4AuBYSKTddhTHFssv1NWUqOIz4lj-aQEJ7d1XNy_fHD9cVnenn16cvFu0s6KqsXambHpOUwjYMQw9xbJcBZNTAXRt5LZ1hQMgjVq8kOVospDHYyerAjuElyeU7enmz367BrLpCP6_p9jbtQv_sSov-7k-ON35Zvvj2uN722zeHVnUMtX1fAxe8ijpBSyFBW9MIpbbSxQjX05T_obVlrbucdKSMZM1w0SpyosRbECvP9Npwdxzp_ysu3vPzPvPyhiV78ece95FdADZAnAFsrb6H-nv0f2x_p-KJR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846300612</pqid></control><display><type>article</type><title>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</title><source>Nature Journals</source><creator>Xiang, Chao ; Jin, Warren ; Terra, Osama ; Dong, Bozhang ; Wang, Heming ; Wu, Lue ; Guo, Joel ; Morin, Theodore J. ; Hughes, Eamonn ; Peters, Jonathan ; Ji, Qing-Xin ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creator><creatorcontrib>Xiang, Chao ; Jin, Warren ; Terra, Osama ; Dong, Bozhang ; Wang, Heming ; Wu, Lue ; Guo, Joel ; Morin, Theodore J. ; Hughes, Eamonn ; Peters, Jonathan ; Ji, Qing-Xin ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creatorcontrib><description>Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects
1
–
5
. However, in optical systems such as microwave synthesizers
6
, optical gyroscopes
7
and atomic clocks
8
, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.
Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06251-w</identifier><identifier>PMID: 37532812</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1093 ; 639/624/1075/1079 ; 639/624/399/1097 ; 639/624/399/1099 ; Circuit reliability ; Complex systems ; Decibels ; Design ; Humanities and Social Sciences ; Integrated circuits ; Isolators ; Lasers ; Microwaves ; multidisciplinary ; Optics ; Optics and Photonics ; Phase noise ; Photonics ; Photons ; Power consumption ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Semiconductor lasers ; Semiconductors ; Silicon ; Silicon nitride ; Synthesis ; Synthesizers ; Systems stability ; Waveguides</subject><ispartof>Nature (London), 2023-08, Vol.620 (7972), p.78-85</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Aug 3, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</citedby><cites>FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</cites><orcidid>0000-0002-7081-0346 ; 0000-0003-4270-8296 ; 0000-0003-0203-5170 ; 0000-0002-4297-7982 ; 0000-0002-6336-8350 ; 0000-0003-1783-1380 ; 0000-0002-7503-7057 ; 0000-0003-3861-0624 ; 0000-0001-5826-6723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37532812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Terra, Osama</creatorcontrib><creatorcontrib>Dong, Bozhang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Morin, Theodore J.</creatorcontrib><creatorcontrib>Hughes, Eamonn</creatorcontrib><creatorcontrib>Peters, Jonathan</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><title>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects
1
–
5
. However, in optical systems such as microwave synthesizers
6
, optical gyroscopes
7
and atomic clocks
8
, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.
Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.</description><subject>639/624/1020/1093</subject><subject>639/624/1075/1079</subject><subject>639/624/399/1097</subject><subject>639/624/399/1099</subject><subject>Circuit reliability</subject><subject>Complex systems</subject><subject>Decibels</subject><subject>Design</subject><subject>Humanities and Social Sciences</subject><subject>Integrated circuits</subject><subject>Isolators</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Optics and Photonics</subject><subject>Phase noise</subject><subject>Photonics</subject><subject>Photons</subject><subject>Power consumption</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor lasers</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Synthesis</subject><subject>Synthesizers</subject><subject>Systems stability</subject><subject>Waveguides</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUlvFDEQhS0EIkPgD3BALXHhYvBu9wmhsEqRcsndcndXTxx57MHVzYh_j4cJYTlwqkN979XyCHnO2WvOpHuDimtnKBOSMiM0p4cHZMOVNVQZZx-SDWPCUeakOSNPEG8ZY5pb9ZicSaulcFxsyJV838W8wLaGJZbcQQ5DAuzWtNSQyoHmEhG6iCWFpVQ6V4AuBYSKTddhTHFssv1NWUqOIz4lj-aQEJ7d1XNy_fHD9cVnenn16cvFu0s6KqsXambHpOUwjYMQw9xbJcBZNTAXRt5LZ1hQMgjVq8kOVospDHYyerAjuElyeU7enmz367BrLpCP6_p9jbtQv_sSov-7k-ON35Zvvj2uN722zeHVnUMtX1fAxe8ijpBSyFBW9MIpbbSxQjX05T_obVlrbucdKSMZM1w0SpyosRbECvP9Npwdxzp_ysu3vPzPvPyhiV78ece95FdADZAnAFsrb6H-nv0f2x_p-KJR</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>Xiang, Chao</creator><creator>Jin, Warren</creator><creator>Terra, Osama</creator><creator>Dong, Bozhang</creator><creator>Wang, Heming</creator><creator>Wu, Lue</creator><creator>Guo, Joel</creator><creator>Morin, Theodore J.</creator><creator>Hughes, Eamonn</creator><creator>Peters, Jonathan</creator><creator>Ji, Qing-Xin</creator><creator>Feshali, Avi</creator><creator>Paniccia, Mario</creator><creator>Vahala, Kerry J.</creator><creator>Bowers, John E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7081-0346</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0203-5170</orcidid><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0002-6336-8350</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid><orcidid>https://orcid.org/0000-0001-5826-6723</orcidid></search><sort><creationdate>20230803</creationdate><title>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</title><author>Xiang, Chao ; Jin, Warren ; Terra, Osama ; Dong, Bozhang ; Wang, Heming ; Wu, Lue ; Guo, Joel ; Morin, Theodore J. ; Hughes, Eamonn ; Peters, Jonathan ; Ji, Qing-Xin ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1020/1093</topic><topic>639/624/1075/1079</topic><topic>639/624/399/1097</topic><topic>639/624/399/1099</topic><topic>Circuit reliability</topic><topic>Complex systems</topic><topic>Decibels</topic><topic>Design</topic><topic>Humanities and Social Sciences</topic><topic>Integrated circuits</topic><topic>Isolators</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Optics and Photonics</topic><topic>Phase noise</topic><topic>Photonics</topic><topic>Photons</topic><topic>Power consumption</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor lasers</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Synthesis</topic><topic>Synthesizers</topic><topic>Systems stability</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Terra, Osama</creatorcontrib><creatorcontrib>Dong, Bozhang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Morin, Theodore J.</creatorcontrib><creatorcontrib>Hughes, Eamonn</creatorcontrib><creatorcontrib>Peters, Jonathan</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Chao</au><au>Jin, Warren</au><au>Terra, Osama</au><au>Dong, Bozhang</au><au>Wang, Heming</au><au>Wu, Lue</au><au>Guo, Joel</au><au>Morin, Theodore J.</au><au>Hughes, Eamonn</au><au>Peters, Jonathan</au><au>Ji, Qing-Xin</au><au>Feshali, Avi</au><au>Paniccia, Mario</au><au>Vahala, Kerry J.</au><au>Bowers, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D integration enables ultralow-noise isolator-free lasers in silicon photonics</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-08-03</date><risdate>2023</risdate><volume>620</volume><issue>7972</issue><spage>78</spage><epage>85</epage><pages>78-85</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects
1
–
5
. However, in optical systems such as microwave synthesizers
6
, optical gyroscopes
7
and atomic clocks
8
, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format—that is, on a single chip—for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III–V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.
Three-dimensional integration of distributed-feedback lasers and ultralow-loss silicon nitride waveguides results in ultralow-noise lasers without the need for optical isolators.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37532812</pmid><doi>10.1038/s41586-023-06251-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7081-0346</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0203-5170</orcidid><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0002-6336-8350</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid><orcidid>https://orcid.org/0000-0001-5826-6723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2023-08, Vol.620 (7972), p.78-85 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10396957 |
source | Nature Journals |
subjects | 639/624/1020/1093 639/624/1075/1079 639/624/399/1097 639/624/399/1099 Circuit reliability Complex systems Decibels Design Humanities and Social Sciences Integrated circuits Isolators Lasers Microwaves multidisciplinary Optics Optics and Photonics Phase noise Photonics Photons Power consumption Reproducibility of Results Science Science (multidisciplinary) Semiconductor lasers Semiconductors Silicon Silicon nitride Synthesis Synthesizers Systems stability Waveguides |
title | 3D integration enables ultralow-noise isolator-free lasers in silicon photonics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20integration%20enables%20ultralow-noise%20isolator-free%20lasers%20in%20silicon%20photonics&rft.jtitle=Nature%20(London)&rft.au=Xiang,%20Chao&rft.date=2023-08-03&rft.volume=620&rft.issue=7972&rft.spage=78&rft.epage=85&rft.pages=78-85&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06251-w&rft_dat=%3Cproquest_pubme%3E2845656724%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-6f80371edcb22bf9742e874b08ac193860a43a2494d7b752dab7d65b7ce8d313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2846300612&rft_id=info:pmid/37532812&rfr_iscdi=true |