Loading…

Loops and the activity of loop extrusion factors constrain chromatin dynamics

The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by loop...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2023-07, Vol.34 (8), p.ar78-ar78
Main Authors: Bailey, Mary Lou P, Surovtsev, Ivan, Williams, Jessica F, Yan, Hao, Yuan, Tianyu, Li, Kevin, Duseau, Katherine, Mochrie, Simon G J, King, Megan C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-452519dbb1c357ee123795b82ab2dd02fd26ecb86b27b0130fd774512d065a833
cites cdi_FETCH-LOGICAL-c461t-452519dbb1c357ee123795b82ab2dd02fd26ecb86b27b0130fd774512d065a833
container_end_page ar78
container_issue 8
container_start_page ar78
container_title Molecular biology of the cell
container_volume 34
creator Bailey, Mary Lou P
Surovtsev, Ivan
Williams, Jessica F
Yan, Hao
Yuan, Tianyu
Li, Kevin
Duseau, Katherine
Mochrie, Simon G J
King, Megan C
description The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops.
doi_str_mv 10.1091/mbc.E23-04-0119
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772810925</galeid><sourcerecordid>A772810925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-452519dbb1c357ee123795b82ab2dd02fd26ecb86b27b0130fd774512d065a833</originalsourceid><addsrcrecordid>eNptUctrFDEcDqLYh569ScCLl9nml8ckc5JSqhVWvLTnkNd0IzPJmsyW7n9vlq3FguSQH_ke-ZIPoQ9AVkAGuJitW11T1hHeEYDhFTqFgQ0dF6p_3WYihg4E5SforNZfhADnvXyLTpgE2nMCp-jHOudtxSZ5vGwCNm6JD3HZ4zziqSE4PC5lV2NOeGxYLhW7nOpSTEzYbUqezdImv09mjq6-Q29GM9Xw_mk_R3dfr2-vbrr1z2_fry7XneM9LC0eFTB4a8ExIUMAyuQgrKLGUu8JHT3tg7Oqt1RaAoyMXkougHrSC6MYO0dfjr7bnZ2DdyG1RJPeljibstfZRP0SSXGj7_ODBsIGpeTB4fOTQ8m_d6Eueo7VhWkyKeRd1VQRRaHdKRv105F6b6agYxpzs3QHur6UkqpWBBWNtfoPqy0f2s_kFMbYzl8ILo4CV3KtJYzP8YHoQ7m6latbuZpwfSi3KT7---pn_t822R8xx6AC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808214517</pqid></control><display><type>article</type><title>Loops and the activity of loop extrusion factors constrain chromatin dynamics</title><source>NCBI_PubMed Central(免费)</source><creator>Bailey, Mary Lou P ; Surovtsev, Ivan ; Williams, Jessica F ; Yan, Hao ; Yuan, Tianyu ; Li, Kevin ; Duseau, Katherine ; Mochrie, Simon G J ; King, Megan C</creator><contributor>Bloom, Kerry</contributor><creatorcontrib>Bailey, Mary Lou P ; Surovtsev, Ivan ; Williams, Jessica F ; Yan, Hao ; Yuan, Tianyu ; Li, Kevin ; Duseau, Katherine ; Mochrie, Simon G J ; King, Megan C ; Bloom, Kerry</creatorcontrib><description>The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E23-04-0119</identifier><identifier>PMID: 37126401</identifier><language>eng</language><publisher>United States: American Society for Cell Biology</publisher><subject>Analysis ; Cell Cycle Proteins - metabolism ; Chromatin ; Chromosomes - metabolism ; DNA ; Fungi ; Genome ; Genome-wide association studies ; Identification and classification ; Polymers</subject><ispartof>Molecular biology of the cell, 2023-07, Vol.34 (8), p.ar78-ar78</ispartof><rights>COPYRIGHT 2023 American Society for Cell Biology</rights><rights>2023 Bailey, Surovtsev, Williams, Yan, “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-452519dbb1c357ee123795b82ab2dd02fd26ecb86b27b0130fd774512d065a833</citedby><cites>FETCH-LOGICAL-c461t-452519dbb1c357ee123795b82ab2dd02fd26ecb86b27b0130fd774512d065a833</cites><orcidid>0000-0002-1688-2226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398873/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398873/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37126401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bloom, Kerry</contributor><creatorcontrib>Bailey, Mary Lou P</creatorcontrib><creatorcontrib>Surovtsev, Ivan</creatorcontrib><creatorcontrib>Williams, Jessica F</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Yuan, Tianyu</creatorcontrib><creatorcontrib>Li, Kevin</creatorcontrib><creatorcontrib>Duseau, Katherine</creatorcontrib><creatorcontrib>Mochrie, Simon G J</creatorcontrib><creatorcontrib>King, Megan C</creatorcontrib><title>Loops and the activity of loop extrusion factors constrain chromatin dynamics</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops.</description><subject>Analysis</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromatin</subject><subject>Chromosomes - metabolism</subject><subject>DNA</subject><subject>Fungi</subject><subject>Genome</subject><subject>Genome-wide association studies</subject><subject>Identification and classification</subject><subject>Polymers</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptUctrFDEcDqLYh569ScCLl9nml8ckc5JSqhVWvLTnkNd0IzPJmsyW7n9vlq3FguSQH_ke-ZIPoQ9AVkAGuJitW11T1hHeEYDhFTqFgQ0dF6p_3WYihg4E5SforNZfhADnvXyLTpgE2nMCp-jHOudtxSZ5vGwCNm6JD3HZ4zziqSE4PC5lV2NOeGxYLhW7nOpSTEzYbUqezdImv09mjq6-Q29GM9Xw_mk_R3dfr2-vbrr1z2_fry7XneM9LC0eFTB4a8ExIUMAyuQgrKLGUu8JHT3tg7Oqt1RaAoyMXkougHrSC6MYO0dfjr7bnZ2DdyG1RJPeljibstfZRP0SSXGj7_ODBsIGpeTB4fOTQ8m_d6Eueo7VhWkyKeRd1VQRRaHdKRv105F6b6agYxpzs3QHur6UkqpWBBWNtfoPqy0f2s_kFMbYzl8ILo4CV3KtJYzP8YHoQ7m6latbuZpwfSi3KT7---pn_t822R8xx6AC</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bailey, Mary Lou P</creator><creator>Surovtsev, Ivan</creator><creator>Williams, Jessica F</creator><creator>Yan, Hao</creator><creator>Yuan, Tianyu</creator><creator>Li, Kevin</creator><creator>Duseau, Katherine</creator><creator>Mochrie, Simon G J</creator><creator>King, Megan C</creator><general>American Society for Cell Biology</general><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1688-2226</orcidid></search><sort><creationdate>20230701</creationdate><title>Loops and the activity of loop extrusion factors constrain chromatin dynamics</title><author>Bailey, Mary Lou P ; Surovtsev, Ivan ; Williams, Jessica F ; Yan, Hao ; Yuan, Tianyu ; Li, Kevin ; Duseau, Katherine ; Mochrie, Simon G J ; King, Megan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-452519dbb1c357ee123795b82ab2dd02fd26ecb86b27b0130fd774512d065a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromatin</topic><topic>Chromosomes - metabolism</topic><topic>DNA</topic><topic>Fungi</topic><topic>Genome</topic><topic>Genome-wide association studies</topic><topic>Identification and classification</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, Mary Lou P</creatorcontrib><creatorcontrib>Surovtsev, Ivan</creatorcontrib><creatorcontrib>Williams, Jessica F</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Yuan, Tianyu</creatorcontrib><creatorcontrib>Li, Kevin</creatorcontrib><creatorcontrib>Duseau, Katherine</creatorcontrib><creatorcontrib>Mochrie, Simon G J</creatorcontrib><creatorcontrib>King, Megan C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, Mary Lou P</au><au>Surovtsev, Ivan</au><au>Williams, Jessica F</au><au>Yan, Hao</au><au>Yuan, Tianyu</au><au>Li, Kevin</au><au>Duseau, Katherine</au><au>Mochrie, Simon G J</au><au>King, Megan C</au><au>Bloom, Kerry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loops and the activity of loop extrusion factors constrain chromatin dynamics</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>34</volume><issue>8</issue><spage>ar78</spage><epage>ar78</epage><pages>ar78-ar78</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops.</abstract><cop>United States</cop><pub>American Society for Cell Biology</pub><pmid>37126401</pmid><doi>10.1091/mbc.E23-04-0119</doi><orcidid>https://orcid.org/0000-0002-1688-2226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2023-07, Vol.34 (8), p.ar78-ar78
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398873
source NCBI_PubMed Central(免费)
subjects Analysis
Cell Cycle Proteins - metabolism
Chromatin
Chromosomes - metabolism
DNA
Fungi
Genome
Genome-wide association studies
Identification and classification
Polymers
title Loops and the activity of loop extrusion factors constrain chromatin dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loops%20and%20the%20activity%20of%20loop%20extrusion%20factors%20constrain%20chromatin%20dynamics&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Bailey,%20Mary%20Lou%20P&rft.date=2023-07-01&rft.volume=34&rft.issue=8&rft.spage=ar78&rft.epage=ar78&rft.pages=ar78-ar78&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E23-04-0119&rft_dat=%3Cgale_pubme%3EA772810925%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-452519dbb1c357ee123795b82ab2dd02fd26ecb86b27b0130fd774512d065a833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808214517&rft_id=info:pmid/37126401&rft_galeid=A772810925&rfr_iscdi=true