Loading…

Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis

The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholip...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2023-08, Vol.299 (8), p.105025, Article 105025
Main Authors: Stukey, Geordan J., Han, Gil-Soo, Carman, George M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-f3ab72a6ea3245b84d2d0c2ed5be238ebc09e1cee1244c855c876b92f01b98ca3
cites cdi_FETCH-LOGICAL-c452t-f3ab72a6ea3245b84d2d0c2ed5be238ebc09e1cee1244c855c876b92f01b98ca3
container_end_page
container_issue 8
container_start_page 105025
container_title The Journal of biological chemistry
container_volume 299
creator Stukey, Geordan J.
Han, Gil-Soo
Carman, George M.
description The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.
doi_str_mv 10.1016/j.jbc.2023.105025
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823020537</els_id><sourcerecordid>2836292638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-f3ab72a6ea3245b84d2d0c2ed5be238ebc09e1cee1244c855c876b92f01b98ca3</originalsourceid><addsrcrecordid>eNp9kcGP1CAYxYnRuOPqH-DFcPTSET5Kp40HYzbqbrKJE6OJN0Lh65ZJByrQSebqXy7rjBu9yIW8j_d7EB4hLzlbc8abN7v1rjdrYCCKlgzkI7LirBWVkPz7Y7JiDHjVgWwvyLOUdqysuuNPyYXY1CAEkyvyczuGNI86O6sz0vmsdEK61SOnJvisnU9UUx8OONEvW2rDvoxoLj4a8W6ZCpmoy-mMh3gsIxc81d7SYfHmtyjIEXXKdHKzszQdfR4xufScPBn0lPDFeb8k3z5--Hp1Xd1-_nRz9f62MrWEXA1C9xvQDWoBtezb2oJlBtDKHkG02BvWITeIHOratFKadtP0HQyM911rtLgk706589Lv0Rr0OepJzdHtdTyqoJ3698S7Ud2Fg-KsZk0DsiS8PifE8GPBlNXeJYPTpD2GJSloRQMdNKItVn6ymhhSijg83MOZui9P7VQpT92Xp07lFebV3w98IP60VQxvTwYs33RwGFUyDr1B6yKarGxw_4n_BVu9rng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836292638</pqid></control><display><type>article</type><title>Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Stukey, Geordan J. ; Han, Gil-Soo ; Carman, George M.</creator><creatorcontrib>Stukey, Geordan J. ; Han, Gil-Soo ; Carman, George M.</creatorcontrib><description>The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105025</identifier><identifier>PMID: 37423305</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Lipids ; Nuclear Proteins - metabolism ; Phosphatidate Phosphatase - metabolism ; Phosphorylation ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; ▪</subject><ispartof>The Journal of biological chemistry, 2023-08, Vol.299 (8), p.105025, Article 105025</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-f3ab72a6ea3245b84d2d0c2ed5be238ebc09e1cee1244c855c876b92f01b98ca3</citedby><cites>FETCH-LOGICAL-c452t-f3ab72a6ea3245b84d2d0c2ed5be238ebc09e1cee1244c855c876b92f01b98ca3</cites><orcidid>0000-0003-2562-5130 ; 0000-0003-4951-8233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406625/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925823020537$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45779,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37423305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stukey, Geordan J.</creatorcontrib><creatorcontrib>Han, Gil-Soo</creatorcontrib><creatorcontrib>Carman, George M.</creatorcontrib><title>Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.</description><subject>Lipids</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphatidate Phosphatase - metabolism</subject><subject>Phosphorylation</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>▪</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcGP1CAYxYnRuOPqH-DFcPTSET5Kp40HYzbqbrKJE6OJN0Lh65ZJByrQSebqXy7rjBu9yIW8j_d7EB4hLzlbc8abN7v1rjdrYCCKlgzkI7LirBWVkPz7Y7JiDHjVgWwvyLOUdqysuuNPyYXY1CAEkyvyczuGNI86O6sz0vmsdEK61SOnJvisnU9UUx8OONEvW2rDvoxoLj4a8W6ZCpmoy-mMh3gsIxc81d7SYfHmtyjIEXXKdHKzszQdfR4xufScPBn0lPDFeb8k3z5--Hp1Xd1-_nRz9f62MrWEXA1C9xvQDWoBtezb2oJlBtDKHkG02BvWITeIHOratFKadtP0HQyM911rtLgk706589Lv0Rr0OepJzdHtdTyqoJ3698S7Ud2Fg-KsZk0DsiS8PifE8GPBlNXeJYPTpD2GJSloRQMdNKItVn6ymhhSijg83MOZui9P7VQpT92Xp07lFebV3w98IP60VQxvTwYs33RwGFUyDr1B6yKarGxw_4n_BVu9rng</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Stukey, Geordan J.</creator><creator>Han, Gil-Soo</creator><creator>Carman, George M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2562-5130</orcidid><orcidid>https://orcid.org/0000-0003-4951-8233</orcidid></search><sort><creationdate>20230801</creationdate><title>Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis</title><author>Stukey, Geordan J. ; Han, Gil-Soo ; Carman, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-f3ab72a6ea3245b84d2d0c2ed5be238ebc09e1cee1244c855c876b92f01b98ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Lipids</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphatidate Phosphatase - metabolism</topic><topic>Phosphorylation</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>▪</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stukey, Geordan J.</creatorcontrib><creatorcontrib>Han, Gil-Soo</creatorcontrib><creatorcontrib>Carman, George M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stukey, Geordan J.</au><au>Han, Gil-Soo</au><au>Carman, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>299</volume><issue>8</issue><spage>105025</spage><pages>105025-</pages><artnum>105025</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37423305</pmid><doi>10.1016/j.jbc.2023.105025</doi><orcidid>https://orcid.org/0000-0003-2562-5130</orcidid><orcidid>https://orcid.org/0000-0003-4951-8233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-08, Vol.299 (8), p.105025, Article 105025
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406625
source ScienceDirect®; PubMed Central
subjects Lipids
Nuclear Proteins - metabolism
Phosphatidate Phosphatase - metabolism
Phosphorylation
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism

title Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphatidate%20phosphatase%20Pah1%20contains%20a%20novel%20RP%20domain%20that%20regulates%20its%20phosphorylation%20and%20function%20in%20yeast%20lipid%20synthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Stukey,%20Geordan%20J.&rft.date=2023-08-01&rft.volume=299&rft.issue=8&rft.spage=105025&rft.pages=105025-&rft.artnum=105025&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105025&rft_dat=%3Cproquest_pubme%3E2836292638%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-f3ab72a6ea3245b84d2d0c2ed5be238ebc09e1cee1244c855c876b92f01b98ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836292638&rft_id=info:pmid/37423305&rfr_iscdi=true