Loading…

Structural basis of purine nucleotide inhibition of human uncoupling protein 1

Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to gene...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2023-06, Vol.9 (22), p.eadh4251-eadh4251
Main Authors: Jones, Scott A, Gogoi, Prerana, Ruprecht, Jonathan J, King, Martin S, Lee, Yang, Zögg, Thomas, Pardon, Els, Chand, Deepak, Steimle, Stefan, Copeman, Danielle M, Cotrim, Camila A, Steyaert, Jan, Crichton, Paul G, Moiseenkova-Bell, Vera, Kunji, Edmund R S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043
cites cdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043
container_end_page eadh4251
container_issue 22
container_start_page eadh4251
container_title Science advances
container_volume 9
creator Jones, Scott A
Gogoi, Prerana
Ruprecht, Jonathan J
King, Martin S
Lee, Yang
Zögg, Thomas
Pardon, Els
Chand, Deepak
Steimle, Stefan
Copeman, Danielle M
Cotrim, Camila A
Steyaert, Jan
Crichton, Paul G
Moiseenkova-Bell, Vera
Kunji, Edmund R S
description Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.
doi_str_mv 10.1126/sciadv.adh4251
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10413660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821641536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</originalsourceid><addsrcrecordid>eNpVUU1LxDAQDaK4i3r1KD162TWTr7YnEfELFj2o55AmqY10k5o0C_57K7uKnmbgvXnzZh5Cp4CXAERcJO2U2SyV6RjhsIfmhJZ8QTir9v_0M3SS0jvGGJgQHOpDNKMl4aJm1Rw9Po8x6zFH1ReNSi4VoS2GHJ23hc-6t2F0xhbOd65xowv-G-_yWvkiex3y0Dv_VgwxjNb5Ao7RQav6ZE929Qi93t68XN8vVk93D9dXq4WmNYwLzgwhdSkEMaUxlDe2BQ5QEcWoKEtTMdXoqsGG11C1FdekFkoToUCU2mJGj9DlVnfIzdoabf04XSCH6NYqfsqgnPyPeNfJt7CRgBlQIfCkcL5TiOEj2zTKtUva9r3yNuQkSUVAMOBUTNTllqpjSCna9ncPYPkdhNwGIXdBTANnf9390n_eTr8A_7GHPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821641536</pqid></control><display><type>article</type><title>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Jones, Scott A ; Gogoi, Prerana ; Ruprecht, Jonathan J ; King, Martin S ; Lee, Yang ; Zögg, Thomas ; Pardon, Els ; Chand, Deepak ; Steimle, Stefan ; Copeman, Danielle M ; Cotrim, Camila A ; Steyaert, Jan ; Crichton, Paul G ; Moiseenkova-Bell, Vera ; Kunji, Edmund R S</creator><creatorcontrib>Jones, Scott A ; Gogoi, Prerana ; Ruprecht, Jonathan J ; King, Martin S ; Lee, Yang ; Zögg, Thomas ; Pardon, Els ; Chand, Deepak ; Steimle, Stefan ; Copeman, Danielle M ; Cotrim, Camila A ; Steyaert, Jan ; Crichton, Paul G ; Moiseenkova-Bell, Vera ; Kunji, Edmund R S</creatorcontrib><description>Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adh4251</identifier><identifier>PMID: 37256948</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Biophysics ; Cryoelectron Microscopy ; Humans ; Ion Channels - chemistry ; Mitochondrial Proteins - metabolism ; Protons ; Purine Nucleotides ; SciAdv r-articles ; Structural Biology ; Uncoupling Protein 1 - genetics ; Uncoupling Protein 1 - metabolism</subject><ispartof>Science advances, 2023-06, Vol.9 (22), p.eadh4251-eadh4251</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</citedby><cites>FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</cites><orcidid>0000-0002-1838-7245 ; 0000-0002-5552-0463 ; 0000-0002-8040-3648 ; 0000-0002-0589-4053 ; 0000-0001-6030-5154 ; 0000-0003-2693-586X ; 0000-0002-2466-0172 ; 0000-0001-9991-5603 ; 0000-0003-0454-4227 ; 0000-0003-3270-6967 ; 0000-0003-3786-8359 ; 0000-0002-0610-4500 ; 0000-0002-8636-6569 ; 0000-0002-9176-5767 ; 0000-0002-3825-874X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413660/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413660/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2883,2884,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37256948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Scott A</creatorcontrib><creatorcontrib>Gogoi, Prerana</creatorcontrib><creatorcontrib>Ruprecht, Jonathan J</creatorcontrib><creatorcontrib>King, Martin S</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Zögg, Thomas</creatorcontrib><creatorcontrib>Pardon, Els</creatorcontrib><creatorcontrib>Chand, Deepak</creatorcontrib><creatorcontrib>Steimle, Stefan</creatorcontrib><creatorcontrib>Copeman, Danielle M</creatorcontrib><creatorcontrib>Cotrim, Camila A</creatorcontrib><creatorcontrib>Steyaert, Jan</creatorcontrib><creatorcontrib>Crichton, Paul G</creatorcontrib><creatorcontrib>Moiseenkova-Bell, Vera</creatorcontrib><creatorcontrib>Kunji, Edmund R S</creatorcontrib><title>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.</description><subject>Biomedicine and Life Sciences</subject><subject>Biophysics</subject><subject>Cryoelectron Microscopy</subject><subject>Humans</subject><subject>Ion Channels - chemistry</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Protons</subject><subject>Purine Nucleotides</subject><subject>SciAdv r-articles</subject><subject>Structural Biology</subject><subject>Uncoupling Protein 1 - genetics</subject><subject>Uncoupling Protein 1 - metabolism</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LxDAQDaK4i3r1KD162TWTr7YnEfELFj2o55AmqY10k5o0C_57K7uKnmbgvXnzZh5Cp4CXAERcJO2U2SyV6RjhsIfmhJZ8QTir9v_0M3SS0jvGGJgQHOpDNKMl4aJm1Rw9Po8x6zFH1ReNSi4VoS2GHJ23hc-6t2F0xhbOd65xowv-G-_yWvkiex3y0Dv_VgwxjNb5Ao7RQav6ZE929Qi93t68XN8vVk93D9dXq4WmNYwLzgwhdSkEMaUxlDe2BQ5QEcWoKEtTMdXoqsGG11C1FdekFkoToUCU2mJGj9DlVnfIzdoabf04XSCH6NYqfsqgnPyPeNfJt7CRgBlQIfCkcL5TiOEj2zTKtUva9r3yNuQkSUVAMOBUTNTllqpjSCna9ncPYPkdhNwGIXdBTANnf9390n_eTr8A_7GHPw</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Jones, Scott A</creator><creator>Gogoi, Prerana</creator><creator>Ruprecht, Jonathan J</creator><creator>King, Martin S</creator><creator>Lee, Yang</creator><creator>Zögg, Thomas</creator><creator>Pardon, Els</creator><creator>Chand, Deepak</creator><creator>Steimle, Stefan</creator><creator>Copeman, Danielle M</creator><creator>Cotrim, Camila A</creator><creator>Steyaert, Jan</creator><creator>Crichton, Paul G</creator><creator>Moiseenkova-Bell, Vera</creator><creator>Kunji, Edmund R S</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1838-7245</orcidid><orcidid>https://orcid.org/0000-0002-5552-0463</orcidid><orcidid>https://orcid.org/0000-0002-8040-3648</orcidid><orcidid>https://orcid.org/0000-0002-0589-4053</orcidid><orcidid>https://orcid.org/0000-0001-6030-5154</orcidid><orcidid>https://orcid.org/0000-0003-2693-586X</orcidid><orcidid>https://orcid.org/0000-0002-2466-0172</orcidid><orcidid>https://orcid.org/0000-0001-9991-5603</orcidid><orcidid>https://orcid.org/0000-0003-0454-4227</orcidid><orcidid>https://orcid.org/0000-0003-3270-6967</orcidid><orcidid>https://orcid.org/0000-0003-3786-8359</orcidid><orcidid>https://orcid.org/0000-0002-0610-4500</orcidid><orcidid>https://orcid.org/0000-0002-8636-6569</orcidid><orcidid>https://orcid.org/0000-0002-9176-5767</orcidid><orcidid>https://orcid.org/0000-0002-3825-874X</orcidid></search><sort><creationdate>20230602</creationdate><title>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</title><author>Jones, Scott A ; Gogoi, Prerana ; Ruprecht, Jonathan J ; King, Martin S ; Lee, Yang ; Zögg, Thomas ; Pardon, Els ; Chand, Deepak ; Steimle, Stefan ; Copeman, Danielle M ; Cotrim, Camila A ; Steyaert, Jan ; Crichton, Paul G ; Moiseenkova-Bell, Vera ; Kunji, Edmund R S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Biophysics</topic><topic>Cryoelectron Microscopy</topic><topic>Humans</topic><topic>Ion Channels - chemistry</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Protons</topic><topic>Purine Nucleotides</topic><topic>SciAdv r-articles</topic><topic>Structural Biology</topic><topic>Uncoupling Protein 1 - genetics</topic><topic>Uncoupling Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Scott A</creatorcontrib><creatorcontrib>Gogoi, Prerana</creatorcontrib><creatorcontrib>Ruprecht, Jonathan J</creatorcontrib><creatorcontrib>King, Martin S</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Zögg, Thomas</creatorcontrib><creatorcontrib>Pardon, Els</creatorcontrib><creatorcontrib>Chand, Deepak</creatorcontrib><creatorcontrib>Steimle, Stefan</creatorcontrib><creatorcontrib>Copeman, Danielle M</creatorcontrib><creatorcontrib>Cotrim, Camila A</creatorcontrib><creatorcontrib>Steyaert, Jan</creatorcontrib><creatorcontrib>Crichton, Paul G</creatorcontrib><creatorcontrib>Moiseenkova-Bell, Vera</creatorcontrib><creatorcontrib>Kunji, Edmund R S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Scott A</au><au>Gogoi, Prerana</au><au>Ruprecht, Jonathan J</au><au>King, Martin S</au><au>Lee, Yang</au><au>Zögg, Thomas</au><au>Pardon, Els</au><au>Chand, Deepak</au><au>Steimle, Stefan</au><au>Copeman, Danielle M</au><au>Cotrim, Camila A</au><au>Steyaert, Jan</au><au>Crichton, Paul G</au><au>Moiseenkova-Bell, Vera</au><au>Kunji, Edmund R S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-06-02</date><risdate>2023</risdate><volume>9</volume><issue>22</issue><spage>eadh4251</spage><epage>eadh4251</epage><pages>eadh4251-eadh4251</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37256948</pmid><doi>10.1126/sciadv.adh4251</doi><orcidid>https://orcid.org/0000-0002-1838-7245</orcidid><orcidid>https://orcid.org/0000-0002-5552-0463</orcidid><orcidid>https://orcid.org/0000-0002-8040-3648</orcidid><orcidid>https://orcid.org/0000-0002-0589-4053</orcidid><orcidid>https://orcid.org/0000-0001-6030-5154</orcidid><orcidid>https://orcid.org/0000-0003-2693-586X</orcidid><orcidid>https://orcid.org/0000-0002-2466-0172</orcidid><orcidid>https://orcid.org/0000-0001-9991-5603</orcidid><orcidid>https://orcid.org/0000-0003-0454-4227</orcidid><orcidid>https://orcid.org/0000-0003-3270-6967</orcidid><orcidid>https://orcid.org/0000-0003-3786-8359</orcidid><orcidid>https://orcid.org/0000-0002-0610-4500</orcidid><orcidid>https://orcid.org/0000-0002-8636-6569</orcidid><orcidid>https://orcid.org/0000-0002-9176-5767</orcidid><orcidid>https://orcid.org/0000-0002-3825-874X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-06, Vol.9 (22), p.eadh4251-eadh4251
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10413660
source American Association for the Advancement of Science; PubMed Central
subjects Biomedicine and Life Sciences
Biophysics
Cryoelectron Microscopy
Humans
Ion Channels - chemistry
Mitochondrial Proteins - metabolism
Protons
Purine Nucleotides
SciAdv r-articles
Structural Biology
Uncoupling Protein 1 - genetics
Uncoupling Protein 1 - metabolism
title Structural basis of purine nucleotide inhibition of human uncoupling protein 1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20purine%20nucleotide%20inhibition%20of%20human%20uncoupling%20protein%201&rft.jtitle=Science%20advances&rft.au=Jones,%20Scott%20A&rft.date=2023-06-02&rft.volume=9&rft.issue=22&rft.spage=eadh4251&rft.epage=eadh4251&rft.pages=eadh4251-eadh4251&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adh4251&rft_dat=%3Cproquest_pubme%3E2821641536%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821641536&rft_id=info:pmid/37256948&rfr_iscdi=true