Loading…
Structural basis of purine nucleotide inhibition of human uncoupling protein 1
Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to gene...
Saved in:
Published in: | Science advances 2023-06, Vol.9 (22), p.eadh4251-eadh4251 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043 |
container_end_page | eadh4251 |
container_issue | 22 |
container_start_page | eadh4251 |
container_title | Science advances |
container_volume | 9 |
creator | Jones, Scott A Gogoi, Prerana Ruprecht, Jonathan J King, Martin S Lee, Yang Zögg, Thomas Pardon, Els Chand, Deepak Steimle, Stefan Copeman, Danielle M Cotrim, Camila A Steyaert, Jan Crichton, Paul G Moiseenkova-Bell, Vera Kunji, Edmund R S |
description | Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak. |
doi_str_mv | 10.1126/sciadv.adh4251 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10413660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821641536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</originalsourceid><addsrcrecordid>eNpVUU1LxDAQDaK4i3r1KD162TWTr7YnEfELFj2o55AmqY10k5o0C_57K7uKnmbgvXnzZh5Cp4CXAERcJO2U2SyV6RjhsIfmhJZ8QTir9v_0M3SS0jvGGJgQHOpDNKMl4aJm1Rw9Po8x6zFH1ReNSi4VoS2GHJ23hc-6t2F0xhbOd65xowv-G-_yWvkiex3y0Dv_VgwxjNb5Ao7RQav6ZE929Qi93t68XN8vVk93D9dXq4WmNYwLzgwhdSkEMaUxlDe2BQ5QEcWoKEtTMdXoqsGG11C1FdekFkoToUCU2mJGj9DlVnfIzdoabf04XSCH6NYqfsqgnPyPeNfJt7CRgBlQIfCkcL5TiOEj2zTKtUva9r3yNuQkSUVAMOBUTNTllqpjSCna9ncPYPkdhNwGIXdBTANnf9390n_eTr8A_7GHPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821641536</pqid></control><display><type>article</type><title>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Jones, Scott A ; Gogoi, Prerana ; Ruprecht, Jonathan J ; King, Martin S ; Lee, Yang ; Zögg, Thomas ; Pardon, Els ; Chand, Deepak ; Steimle, Stefan ; Copeman, Danielle M ; Cotrim, Camila A ; Steyaert, Jan ; Crichton, Paul G ; Moiseenkova-Bell, Vera ; Kunji, Edmund R S</creator><creatorcontrib>Jones, Scott A ; Gogoi, Prerana ; Ruprecht, Jonathan J ; King, Martin S ; Lee, Yang ; Zögg, Thomas ; Pardon, Els ; Chand, Deepak ; Steimle, Stefan ; Copeman, Danielle M ; Cotrim, Camila A ; Steyaert, Jan ; Crichton, Paul G ; Moiseenkova-Bell, Vera ; Kunji, Edmund R S</creatorcontrib><description>Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adh4251</identifier><identifier>PMID: 37256948</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Biophysics ; Cryoelectron Microscopy ; Humans ; Ion Channels - chemistry ; Mitochondrial Proteins - metabolism ; Protons ; Purine Nucleotides ; SciAdv r-articles ; Structural Biology ; Uncoupling Protein 1 - genetics ; Uncoupling Protein 1 - metabolism</subject><ispartof>Science advances, 2023-06, Vol.9 (22), p.eadh4251-eadh4251</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</citedby><cites>FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</cites><orcidid>0000-0002-1838-7245 ; 0000-0002-5552-0463 ; 0000-0002-8040-3648 ; 0000-0002-0589-4053 ; 0000-0001-6030-5154 ; 0000-0003-2693-586X ; 0000-0002-2466-0172 ; 0000-0001-9991-5603 ; 0000-0003-0454-4227 ; 0000-0003-3270-6967 ; 0000-0003-3786-8359 ; 0000-0002-0610-4500 ; 0000-0002-8636-6569 ; 0000-0002-9176-5767 ; 0000-0002-3825-874X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413660/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413660/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2883,2884,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37256948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Scott A</creatorcontrib><creatorcontrib>Gogoi, Prerana</creatorcontrib><creatorcontrib>Ruprecht, Jonathan J</creatorcontrib><creatorcontrib>King, Martin S</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Zögg, Thomas</creatorcontrib><creatorcontrib>Pardon, Els</creatorcontrib><creatorcontrib>Chand, Deepak</creatorcontrib><creatorcontrib>Steimle, Stefan</creatorcontrib><creatorcontrib>Copeman, Danielle M</creatorcontrib><creatorcontrib>Cotrim, Camila A</creatorcontrib><creatorcontrib>Steyaert, Jan</creatorcontrib><creatorcontrib>Crichton, Paul G</creatorcontrib><creatorcontrib>Moiseenkova-Bell, Vera</creatorcontrib><creatorcontrib>Kunji, Edmund R S</creatorcontrib><title>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.</description><subject>Biomedicine and Life Sciences</subject><subject>Biophysics</subject><subject>Cryoelectron Microscopy</subject><subject>Humans</subject><subject>Ion Channels - chemistry</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Protons</subject><subject>Purine Nucleotides</subject><subject>SciAdv r-articles</subject><subject>Structural Biology</subject><subject>Uncoupling Protein 1 - genetics</subject><subject>Uncoupling Protein 1 - metabolism</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LxDAQDaK4i3r1KD162TWTr7YnEfELFj2o55AmqY10k5o0C_57K7uKnmbgvXnzZh5Cp4CXAERcJO2U2SyV6RjhsIfmhJZ8QTir9v_0M3SS0jvGGJgQHOpDNKMl4aJm1Rw9Po8x6zFH1ReNSi4VoS2GHJ23hc-6t2F0xhbOd65xowv-G-_yWvkiex3y0Dv_VgwxjNb5Ao7RQav6ZE929Qi93t68XN8vVk93D9dXq4WmNYwLzgwhdSkEMaUxlDe2BQ5QEcWoKEtTMdXoqsGG11C1FdekFkoToUCU2mJGj9DlVnfIzdoabf04XSCH6NYqfsqgnPyPeNfJt7CRgBlQIfCkcL5TiOEj2zTKtUva9r3yNuQkSUVAMOBUTNTllqpjSCna9ncPYPkdhNwGIXdBTANnf9390n_eTr8A_7GHPw</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Jones, Scott A</creator><creator>Gogoi, Prerana</creator><creator>Ruprecht, Jonathan J</creator><creator>King, Martin S</creator><creator>Lee, Yang</creator><creator>Zögg, Thomas</creator><creator>Pardon, Els</creator><creator>Chand, Deepak</creator><creator>Steimle, Stefan</creator><creator>Copeman, Danielle M</creator><creator>Cotrim, Camila A</creator><creator>Steyaert, Jan</creator><creator>Crichton, Paul G</creator><creator>Moiseenkova-Bell, Vera</creator><creator>Kunji, Edmund R S</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1838-7245</orcidid><orcidid>https://orcid.org/0000-0002-5552-0463</orcidid><orcidid>https://orcid.org/0000-0002-8040-3648</orcidid><orcidid>https://orcid.org/0000-0002-0589-4053</orcidid><orcidid>https://orcid.org/0000-0001-6030-5154</orcidid><orcidid>https://orcid.org/0000-0003-2693-586X</orcidid><orcidid>https://orcid.org/0000-0002-2466-0172</orcidid><orcidid>https://orcid.org/0000-0001-9991-5603</orcidid><orcidid>https://orcid.org/0000-0003-0454-4227</orcidid><orcidid>https://orcid.org/0000-0003-3270-6967</orcidid><orcidid>https://orcid.org/0000-0003-3786-8359</orcidid><orcidid>https://orcid.org/0000-0002-0610-4500</orcidid><orcidid>https://orcid.org/0000-0002-8636-6569</orcidid><orcidid>https://orcid.org/0000-0002-9176-5767</orcidid><orcidid>https://orcid.org/0000-0002-3825-874X</orcidid></search><sort><creationdate>20230602</creationdate><title>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</title><author>Jones, Scott A ; Gogoi, Prerana ; Ruprecht, Jonathan J ; King, Martin S ; Lee, Yang ; Zögg, Thomas ; Pardon, Els ; Chand, Deepak ; Steimle, Stefan ; Copeman, Danielle M ; Cotrim, Camila A ; Steyaert, Jan ; Crichton, Paul G ; Moiseenkova-Bell, Vera ; Kunji, Edmund R S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Biophysics</topic><topic>Cryoelectron Microscopy</topic><topic>Humans</topic><topic>Ion Channels - chemistry</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Protons</topic><topic>Purine Nucleotides</topic><topic>SciAdv r-articles</topic><topic>Structural Biology</topic><topic>Uncoupling Protein 1 - genetics</topic><topic>Uncoupling Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Scott A</creatorcontrib><creatorcontrib>Gogoi, Prerana</creatorcontrib><creatorcontrib>Ruprecht, Jonathan J</creatorcontrib><creatorcontrib>King, Martin S</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Zögg, Thomas</creatorcontrib><creatorcontrib>Pardon, Els</creatorcontrib><creatorcontrib>Chand, Deepak</creatorcontrib><creatorcontrib>Steimle, Stefan</creatorcontrib><creatorcontrib>Copeman, Danielle M</creatorcontrib><creatorcontrib>Cotrim, Camila A</creatorcontrib><creatorcontrib>Steyaert, Jan</creatorcontrib><creatorcontrib>Crichton, Paul G</creatorcontrib><creatorcontrib>Moiseenkova-Bell, Vera</creatorcontrib><creatorcontrib>Kunji, Edmund R S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Scott A</au><au>Gogoi, Prerana</au><au>Ruprecht, Jonathan J</au><au>King, Martin S</au><au>Lee, Yang</au><au>Zögg, Thomas</au><au>Pardon, Els</au><au>Chand, Deepak</au><au>Steimle, Stefan</au><au>Copeman, Danielle M</au><au>Cotrim, Camila A</au><au>Steyaert, Jan</au><au>Crichton, Paul G</au><au>Moiseenkova-Bell, Vera</au><au>Kunji, Edmund R S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of purine nucleotide inhibition of human uncoupling protein 1</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-06-02</date><risdate>2023</risdate><volume>9</volume><issue>22</issue><spage>eadh4251</spage><epage>eadh4251</epage><pages>eadh4251-eadh4251</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37256948</pmid><doi>10.1126/sciadv.adh4251</doi><orcidid>https://orcid.org/0000-0002-1838-7245</orcidid><orcidid>https://orcid.org/0000-0002-5552-0463</orcidid><orcidid>https://orcid.org/0000-0002-8040-3648</orcidid><orcidid>https://orcid.org/0000-0002-0589-4053</orcidid><orcidid>https://orcid.org/0000-0001-6030-5154</orcidid><orcidid>https://orcid.org/0000-0003-2693-586X</orcidid><orcidid>https://orcid.org/0000-0002-2466-0172</orcidid><orcidid>https://orcid.org/0000-0001-9991-5603</orcidid><orcidid>https://orcid.org/0000-0003-0454-4227</orcidid><orcidid>https://orcid.org/0000-0003-3270-6967</orcidid><orcidid>https://orcid.org/0000-0003-3786-8359</orcidid><orcidid>https://orcid.org/0000-0002-0610-4500</orcidid><orcidid>https://orcid.org/0000-0002-8636-6569</orcidid><orcidid>https://orcid.org/0000-0002-9176-5767</orcidid><orcidid>https://orcid.org/0000-0002-3825-874X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2023-06, Vol.9 (22), p.eadh4251-eadh4251 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10413660 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Biomedicine and Life Sciences Biophysics Cryoelectron Microscopy Humans Ion Channels - chemistry Mitochondrial Proteins - metabolism Protons Purine Nucleotides SciAdv r-articles Structural Biology Uncoupling Protein 1 - genetics Uncoupling Protein 1 - metabolism |
title | Structural basis of purine nucleotide inhibition of human uncoupling protein 1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20purine%20nucleotide%20inhibition%20of%20human%20uncoupling%20protein%201&rft.jtitle=Science%20advances&rft.au=Jones,%20Scott%20A&rft.date=2023-06-02&rft.volume=9&rft.issue=22&rft.spage=eadh4251&rft.epage=eadh4251&rft.pages=eadh4251-eadh4251&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adh4251&rft_dat=%3Cproquest_pubme%3E2821641536%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-54d2297662d7dd35bef151182a43677d84abc8b0d5918f85c296ac26a167ce043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821641536&rft_id=info:pmid/37256948&rfr_iscdi=true |