Loading…

Aspirin Affects MDA-MB-231 Vesicle Production and Their Capacity to Induce Fibroblasts towards a Pro-Invasive State

Long-term administration of aspirin (ASA, acetylsalicylic acid) in oncogenic patients has been related to a reduction in cancer risk incidence, but its precise mechanism of action is unclear. The activation of cancer-associated fibroblasts (CAFs) is a key element in tumor progression and can be trig...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-07, Vol.24 (15), p.12020
Main Authors: Louback, Rafaela de Assiz, Martins-Cardoso, Karina, Tinoco, Luzineide W, Collino, Federica, de Barros, Ana Paula D N, Fortuna-Costa, Anneliese, Monteiro, Robson Q, Rossi, Maria Isabel Doria, Lindoso, Rafael Soares
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long-term administration of aspirin (ASA, acetylsalicylic acid) in oncogenic patients has been related to a reduction in cancer risk incidence, but its precise mechanism of action is unclear. The activation of cancer-associated fibroblasts (CAFs) is a key element in tumor progression and can be triggered by cancer-derived extracellular vesicles (EVs). Targeting the communication between cancer cells and the surrounding tumor microenvironment (TME) may control cancer progression. Our aim was to investigate the effect of ASA on breast cancer cells, focusing on EV secretion and their effect on the biological properties of CAFs. As a result, ASA was shown to reduce the amount and alter the size distribution of EVs produced by MDA-MB-231 tumor cells. Fibroblasts stimulated with EVs derived from MDA-MB-231 treated with ASA (EV-ASA) showed a lower expression of alpha-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP2) but not fibroblast activation protein (FAP) in respect to the ones stimulated with EVs from untreated breast cancer cells (EV-CTR). Furthermore, invasion assays using a three-dimensional (3D) fibroblast spheroid model showed reduced MDA-MB-231 invasion towards fibroblast spheroids pretreated with EV-ASA as compared to spheroids prepared with EV-CTR-stimulated fibroblasts. This suggests that ASA partially inhibits the ability of tumor EVs to stimulate CAFs to promote cancer invasion. In conclusion, ASA can interfere with tumor communication by reducing EV secretion by breast tumor cells as well as by interfering with their capacity to stimulate fibroblasts to become CAFs.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241512020