Loading…

Partial cytological diploidization of neoautotetraploid meiosis by induced cross-over rate reduction

Polyploids, which arise from whole-genome duplication events, have contributed to genome evolution throughout eukaryotes. Among plants, novel features of neopolyploids include traits that can be evolutionarily or agriculturally beneficial, such as increased abiotic stress tolerance. Thus, in additio...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-08, Vol.120 (33), p.e2305002120-e2305002120
Main Authors: Gonzalo, Adrián, Parra-Nunez, Pablo, Bachmann, Andreas L, Sanchez-Moran, Eugenio, Bomblies, Kirsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyploids, which arise from whole-genome duplication events, have contributed to genome evolution throughout eukaryotes. Among plants, novel features of neopolyploids include traits that can be evolutionarily or agriculturally beneficial, such as increased abiotic stress tolerance. Thus, in addition to being interesting from an evolutionary perspective, genome duplication is also increasingly recognized as a promising crop improvement tool. However, newly formed (neo)polyploids commonly suffer from fertility problems, which have been attributed to abnormal associations among the multiple homologous chromosome copies during meiosis (multivalents). Here, we test the long-standing hypothesis that reducing meiotic cross-over number may be sufficient to limit multivalent formation, favoring diploid-like bivalent associations (cytological diploidization). To do so, we developed lines with low cross-over rates by combining mutations for and . Double mutants showed a reduction of ~33% in cross-over numbers in diploids without compromising meiotic stability. Neopolyploids derived from the double mutant show a cross-over rate reduction of about 40% relative to wild-type neotetraploids, and groups of four homologs indeed formed fewer multivalents and more bivalents. However, we also show that the reduction in multivalents comes with the cost of a slightly increased frequency of univalents and that it does not rescue neopolyploid fertility. Thus, while our results do show that reducing cross-over rates can reduce multivalent frequency in neopolyploids, they also emphasize that there are additional factors affecting both meiotic stability and neopolyploid fertility that will need to be considered in solving the neopolyploid fertility challenge.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2305002120