Loading…
Theory for High-Throughput Genetic Interaction Screening
Systematic, genome-scale genetic screens have been instrumental for elucidating genotype–phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genet...
Saved in:
Published in: | ACS synthetic biology 2023-08, Vol.12 (8), p.2290-2300 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a390t-ef14bb101535a957585f0a73fced3b29b1eace052606f5ca3d6b7a5201fe9e903 |
container_end_page | 2300 |
container_issue | 8 |
container_start_page | 2290 |
container_title | ACS synthetic biology |
container_volume | 12 |
creator | McCarthy, Madeline E. Dodd, William B. Lu, Xiaoming Pritko, Daniel J. Patel, Nishi D. Haskell, Charlotte V. Sanabria, Hugo Blenner, Mark A. Birtwistle, Marc R. |
description | Systematic, genome-scale genetic screens have been instrumental for elucidating genotype–phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing. |
doi_str_mv | 10.1021/acssynbio.2c00627 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10443530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839741274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-ef14bb101535a957585f0a73fced3b29b1eace052606f5ca3d6b7a5201fe9e903</originalsourceid><addsrcrecordid>eNp9kE1PwjAYxxujEYJ8AC9mRy_Dvqx7ORlDFEhIPIjnpivPtpLRYruZ8O0tAQle7KVNnv_L0x9C9wRPCKbkSSrv96bUdkIVxinNrtCQkpTEHKfs-uI9QGPvNzgczhln-S0asCxJWZLRIcpXDVi3jyrrormum3jVONvXza7vohkY6LSKFqYDJ1WnrYk-lAMw2tR36KaSrYfx6R6hz7fX1XQeL99ni-nLMpaswF0MFUnKkmASqmXBM57zCsuMVQrWrKRFSUAqwJymOK24kmydlpnkFJMKCigwG6HnY-6uL7ewVmA6J1uxc3or3V5YqcXfidGNqO23IDhJwncPCY-nBGe_evCd2GqvoG2lAdt7QXNWZAmhWRKk5ChVznrvoDr3ECwO1MWZujhRD56HywXPjl_GQRAfBcErNrZ3JvD6J_AHnuiQJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839741274</pqid></control><display><type>article</type><title>Theory for High-Throughput Genetic Interaction Screening</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>McCarthy, Madeline E. ; Dodd, William B. ; Lu, Xiaoming ; Pritko, Daniel J. ; Patel, Nishi D. ; Haskell, Charlotte V. ; Sanabria, Hugo ; Blenner, Mark A. ; Birtwistle, Marc R.</creator><creatorcontrib>McCarthy, Madeline E. ; Dodd, William B. ; Lu, Xiaoming ; Pritko, Daniel J. ; Patel, Nishi D. ; Haskell, Charlotte V. ; Sanabria, Hugo ; Blenner, Mark A. ; Birtwistle, Marc R.</creatorcontrib><description>Systematic, genome-scale genetic screens have been instrumental for elucidating genotype–phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.2c00627</identifier><identifier>PMID: 37463472</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cloning, Molecular ; High-Throughput Screening Assays ; Humans ; Mammals</subject><ispartof>ACS synthetic biology, 2023-08, Vol.12 (8), p.2290-2300</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a390t-ef14bb101535a957585f0a73fced3b29b1eace052606f5ca3d6b7a5201fe9e903</cites><orcidid>0000-0002-6367-0461 ; 0000-0001-7068-6827 ; 0000-0002-0341-0705 ; 0000-0001-9274-3749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37463472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarthy, Madeline E.</creatorcontrib><creatorcontrib>Dodd, William B.</creatorcontrib><creatorcontrib>Lu, Xiaoming</creatorcontrib><creatorcontrib>Pritko, Daniel J.</creatorcontrib><creatorcontrib>Patel, Nishi D.</creatorcontrib><creatorcontrib>Haskell, Charlotte V.</creatorcontrib><creatorcontrib>Sanabria, Hugo</creatorcontrib><creatorcontrib>Blenner, Mark A.</creatorcontrib><creatorcontrib>Birtwistle, Marc R.</creatorcontrib><title>Theory for High-Throughput Genetic Interaction Screening</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Systematic, genome-scale genetic screens have been instrumental for elucidating genotype–phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.</description><subject>Animals</subject><subject>Cloning, Molecular</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Mammals</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwjAYxxujEYJ8AC9mRy_Dvqx7ORlDFEhIPIjnpivPtpLRYruZ8O0tAQle7KVNnv_L0x9C9wRPCKbkSSrv96bUdkIVxinNrtCQkpTEHKfs-uI9QGPvNzgczhln-S0asCxJWZLRIcpXDVi3jyrrormum3jVONvXza7vohkY6LSKFqYDJ1WnrYk-lAMw2tR36KaSrYfx6R6hz7fX1XQeL99ni-nLMpaswF0MFUnKkmASqmXBM57zCsuMVQrWrKRFSUAqwJymOK24kmydlpnkFJMKCigwG6HnY-6uL7ewVmA6J1uxc3or3V5YqcXfidGNqO23IDhJwncPCY-nBGe_evCd2GqvoG2lAdt7QXNWZAmhWRKk5ChVznrvoDr3ECwO1MWZujhRD56HywXPjl_GQRAfBcErNrZ3JvD6J_AHnuiQJQ</recordid><startdate>20230818</startdate><enddate>20230818</enddate><creator>McCarthy, Madeline E.</creator><creator>Dodd, William B.</creator><creator>Lu, Xiaoming</creator><creator>Pritko, Daniel J.</creator><creator>Patel, Nishi D.</creator><creator>Haskell, Charlotte V.</creator><creator>Sanabria, Hugo</creator><creator>Blenner, Mark A.</creator><creator>Birtwistle, Marc R.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6367-0461</orcidid><orcidid>https://orcid.org/0000-0001-7068-6827</orcidid><orcidid>https://orcid.org/0000-0002-0341-0705</orcidid><orcidid>https://orcid.org/0000-0001-9274-3749</orcidid></search><sort><creationdate>20230818</creationdate><title>Theory for High-Throughput Genetic Interaction Screening</title><author>McCarthy, Madeline E. ; Dodd, William B. ; Lu, Xiaoming ; Pritko, Daniel J. ; Patel, Nishi D. ; Haskell, Charlotte V. ; Sanabria, Hugo ; Blenner, Mark A. ; Birtwistle, Marc R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-ef14bb101535a957585f0a73fced3b29b1eace052606f5ca3d6b7a5201fe9e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Cloning, Molecular</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Mammals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, Madeline E.</creatorcontrib><creatorcontrib>Dodd, William B.</creatorcontrib><creatorcontrib>Lu, Xiaoming</creatorcontrib><creatorcontrib>Pritko, Daniel J.</creatorcontrib><creatorcontrib>Patel, Nishi D.</creatorcontrib><creatorcontrib>Haskell, Charlotte V.</creatorcontrib><creatorcontrib>Sanabria, Hugo</creatorcontrib><creatorcontrib>Blenner, Mark A.</creatorcontrib><creatorcontrib>Birtwistle, Marc R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, Madeline E.</au><au>Dodd, William B.</au><au>Lu, Xiaoming</au><au>Pritko, Daniel J.</au><au>Patel, Nishi D.</au><au>Haskell, Charlotte V.</au><au>Sanabria, Hugo</au><au>Blenner, Mark A.</au><au>Birtwistle, Marc R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory for High-Throughput Genetic Interaction Screening</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2023-08-18</date><risdate>2023</risdate><volume>12</volume><issue>8</issue><spage>2290</spage><epage>2300</epage><pages>2290-2300</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Systematic, genome-scale genetic screens have been instrumental for elucidating genotype–phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37463472</pmid><doi>10.1021/acssynbio.2c00627</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6367-0461</orcidid><orcidid>https://orcid.org/0000-0001-7068-6827</orcidid><orcidid>https://orcid.org/0000-0002-0341-0705</orcidid><orcidid>https://orcid.org/0000-0001-9274-3749</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2023-08, Vol.12 (8), p.2290-2300 |
issn | 2161-5063 2161-5063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10443530 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Cloning, Molecular High-Throughput Screening Assays Humans Mammals |
title | Theory for High-Throughput Genetic Interaction Screening |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20for%20High-Throughput%20Genetic%20Interaction%20Screening&rft.jtitle=ACS%20synthetic%20biology&rft.au=McCarthy,%20Madeline%20E.&rft.date=2023-08-18&rft.volume=12&rft.issue=8&rft.spage=2290&rft.epage=2300&rft.pages=2290-2300&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.2c00627&rft_dat=%3Cproquest_pubme%3E2839741274%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a390t-ef14bb101535a957585f0a73fced3b29b1eace052606f5ca3d6b7a5201fe9e903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839741274&rft_id=info:pmid/37463472&rfr_iscdi=true |