Loading…

A comprehensive review of fault diagnosis and fault-tolerant control techniques for modular multi-level converters

Background Many faults occur in the modular multi-level converters (MMCs), including unbalancing capacitor voltage, lower and upper arm unbalancing, the line to line voltage unbalancing, sensors and actuators fault, system fault, and sub-modules fault in high as well as medium voltage applications....

Full description

Saved in:
Bibliographic Details
Published in:Science Progress 2022-07, Vol.105 (3), p.368504221118965-368504221118965
Main Authors: Ahmad, Faizan, Adnan, Muhammad, Amin, Arslan Ahmed, Khan, Muhammad Gufran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Many faults occur in the modular multi-level converters (MMCs), including unbalancing capacitor voltage, lower and upper arm unbalancing, the line to line voltage unbalancing, sensors and actuators fault, system fault, and sub-modules fault in high as well as medium voltage applications. Introduction Several fault-tolerant approaches are presented to overcome these problems, such as active fault-tolerant control system (AFTCS), passive fault-tolerant control system (PFTCS), hybrid fault-tolerant control system (HFTCS), redundant system technique, special power circuit with the controller, and zero sequence voltage methods, which we will explain extensively in this article. Methodology This review emphasizes the types of faults in the MMCs and discusses the protection methods under failure conditions. The MMC is more popular in high voltage applications because it not only improves the quality of the grid but also has good harmonic performance in high power transmission. There is no need for any isolated dc sources to operate it. When faults are removed, the efficiency and reliability of the system will be increased. Results This extensive explanation of the current literature on MMC fault diagnosis and control techniques will conclude which methods provide a more valuable solution. Finally, this paper discusses the best approach to reduce MMC faults and provides a future research direction to the readers.
ISSN:0036-8504
2047-7163
DOI:10.1177/00368504221118965