Loading…

Combined Electrochemical, XPS, and STXM Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium–Sulfur Batteries

Li3N is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective Li3N coatings can be simply formed by the...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-08, Vol.15 (33), p.39198-39210
Main Authors: Fitch, Samuel D. S., Moehl, Gilles E., Meddings, Nina, Fop, Sacha, Soulé, Samantha, Lee, Tien-Lin, Kazemian, Majid, Garcia-Araez, Nuria, Hector, Andrew L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a426t-7c19050c5777245c55037ff37a9a00a573369b4c8210b7ee2806c63dd24e354a3
cites cdi_FETCH-LOGICAL-a426t-7c19050c5777245c55037ff37a9a00a573369b4c8210b7ee2806c63dd24e354a3
container_end_page 39210
container_issue 33
container_start_page 39198
container_title ACS applied materials & interfaces
container_volume 15
creator Fitch, Samuel D. S.
Moehl, Gilles E.
Meddings, Nina
Fop, Sacha
Soulé, Samantha
Lee, Tien-Lin
Kazemian, Majid
Garcia-Araez, Nuria
Hector, Andrew L.
description Li3N is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective Li3N coatings can be simply formed by the direct reaction of electrodeposited lithium electrodes with N2 gas, whereas using battery-grade lithium foil is problematic due to the presence of a native passivation layer that hampers that reaction. The protective Li3N coating is effective at preventing lithium dendrite formation, as found from unidirectional plating and plating–stripping measurements in Li–Li cells. The Li3N coating also efficiently suppresses the parasitic reactions of polysulfides and other electrolyte species with the lithium electrode, as demonstrated by scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy, and optical microscopy. The protection of the lithium electrode against corrosion by polysulfides and other electrolyte species, as well as the promotion of smooth deposits without dendrites, makes the Li3N coating highly promising for applications in lithium metal batteries, such as lithium–sulfur batteries. The present findings show that the formation of Li3N can be achieved with lithium electrodes covered by a secondary electrolyte interface layer, which proves that the in situ formation of Li3N coatings inside the batteries is attainable.
doi_str_mv 10.1021/acsami.3c04897
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10450643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847747785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-7c19050c5777245c55037ff37a9a00a573369b4c8210b7ee2806c63dd24e354a3</originalsourceid><addsrcrecordid>eNp1kc1rFDEYh4Mo9kOvHiVHke76Tj4mMyfRpX7AVgtbobfwbuadbsrMpCaZQm-9evY_9C9xdNdFD0IgIXl-T0J-jD0rYF6AKF6hS9j7uXSgqto8YIdFrdSsElo83K-VOmBHKV0DlFKAfswOpNFaCDCH7Nsi9Gs_UMNPO3I5Breh3jvsTvjl-eqE49Dw1cXlGV_lsbnjoeVLnzd-7Pknn6NviGPiyM9jyFPc3xJfBMx-uOJtiHv2jDJ2v127nR_331dj146Rv8WcKXpKT9ijFrtET3fzMfvy7vRi8WG2_Pz-4-LNcoZKlHlmXFGDBqeNMUJppzVI07bSYI0AqI2UZb1WrhIFrA2RqKB0pWwaoUhqhfKYvd56b8Z1T42jIUfs7E30PcY7G9Dbf08Gv7FX4dYWoDSUSk6GFztDDF9HStn2PjnqOhwojMmKShkzjUpP6HyLuhhSitTu7ynA_irQbgu0uwKnwPO_X7fH_zQ2AS-3wBS012GMw_RZ_7P9BI85p48</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847747785</pqid></control><display><type>article</type><title>Combined Electrochemical, XPS, and STXM Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium–Sulfur Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Fitch, Samuel D. S. ; Moehl, Gilles E. ; Meddings, Nina ; Fop, Sacha ; Soulé, Samantha ; Lee, Tien-Lin ; Kazemian, Majid ; Garcia-Araez, Nuria ; Hector, Andrew L.</creator><creatorcontrib>Fitch, Samuel D. S. ; Moehl, Gilles E. ; Meddings, Nina ; Fop, Sacha ; Soulé, Samantha ; Lee, Tien-Lin ; Kazemian, Majid ; Garcia-Araez, Nuria ; Hector, Andrew L.</creatorcontrib><description>Li3N is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective Li3N coatings can be simply formed by the direct reaction of electrodeposited lithium electrodes with N2 gas, whereas using battery-grade lithium foil is problematic due to the presence of a native passivation layer that hampers that reaction. The protective Li3N coating is effective at preventing lithium dendrite formation, as found from unidirectional plating and plating–stripping measurements in Li–Li cells. The Li3N coating also efficiently suppresses the parasitic reactions of polysulfides and other electrolyte species with the lithium electrode, as demonstrated by scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy, and optical microscopy. The protection of the lithium electrode against corrosion by polysulfides and other electrolyte species, as well as the promotion of smooth deposits without dendrites, makes the Li3N coating highly promising for applications in lithium metal batteries, such as lithium–sulfur batteries. The present findings show that the formation of Li3N can be achieved with lithium electrodes covered by a secondary electrolyte interface layer, which proves that the in situ formation of Li3N coatings inside the batteries is attainable.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c04897</identifier><identifier>PMID: 37552207</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-08, Vol.15 (33), p.39198-39210</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-7c19050c5777245c55037ff37a9a00a573369b4c8210b7ee2806c63dd24e354a3</citedby><cites>FETCH-LOGICAL-a426t-7c19050c5777245c55037ff37a9a00a573369b4c8210b7ee2806c63dd24e354a3</cites><orcidid>0000-0003-3754-8654 ; 0000-0001-9095-2379 ; 0000-0003-4910-3601 ; 0000-0002-9964-2163 ; 0000-0002-1042-6115 ; 0000-0003-4168-6363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37552207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitch, Samuel D. S.</creatorcontrib><creatorcontrib>Moehl, Gilles E.</creatorcontrib><creatorcontrib>Meddings, Nina</creatorcontrib><creatorcontrib>Fop, Sacha</creatorcontrib><creatorcontrib>Soulé, Samantha</creatorcontrib><creatorcontrib>Lee, Tien-Lin</creatorcontrib><creatorcontrib>Kazemian, Majid</creatorcontrib><creatorcontrib>Garcia-Araez, Nuria</creatorcontrib><creatorcontrib>Hector, Andrew L.</creatorcontrib><title>Combined Electrochemical, XPS, and STXM Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium–Sulfur Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Li3N is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective Li3N coatings can be simply formed by the direct reaction of electrodeposited lithium electrodes with N2 gas, whereas using battery-grade lithium foil is problematic due to the presence of a native passivation layer that hampers that reaction. The protective Li3N coating is effective at preventing lithium dendrite formation, as found from unidirectional plating and plating–stripping measurements in Li–Li cells. The Li3N coating also efficiently suppresses the parasitic reactions of polysulfides and other electrolyte species with the lithium electrode, as demonstrated by scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy, and optical microscopy. The protection of the lithium electrode against corrosion by polysulfides and other electrolyte species, as well as the promotion of smooth deposits without dendrites, makes the Li3N coating highly promising for applications in lithium metal batteries, such as lithium–sulfur batteries. The present findings show that the formation of Li3N can be achieved with lithium electrodes covered by a secondary electrolyte interface layer, which proves that the in situ formation of Li3N coatings inside the batteries is attainable.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1rFDEYh4Mo9kOvHiVHke76Tj4mMyfRpX7AVgtbobfwbuadbsrMpCaZQm-9evY_9C9xdNdFD0IgIXl-T0J-jD0rYF6AKF6hS9j7uXSgqto8YIdFrdSsElo83K-VOmBHKV0DlFKAfswOpNFaCDCH7Nsi9Gs_UMNPO3I5Breh3jvsTvjl-eqE49Dw1cXlGV_lsbnjoeVLnzd-7Pknn6NviGPiyM9jyFPc3xJfBMx-uOJtiHv2jDJ2v127nR_331dj146Rv8WcKXpKT9ijFrtET3fzMfvy7vRi8WG2_Pz-4-LNcoZKlHlmXFGDBqeNMUJppzVI07bSYI0AqI2UZb1WrhIFrA2RqKB0pWwaoUhqhfKYvd56b8Z1T42jIUfs7E30PcY7G9Dbf08Gv7FX4dYWoDSUSk6GFztDDF9HStn2PjnqOhwojMmKShkzjUpP6HyLuhhSitTu7ynA_irQbgu0uwKnwPO_X7fH_zQ2AS-3wBS012GMw_RZ_7P9BI85p48</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Fitch, Samuel D. S.</creator><creator>Moehl, Gilles E.</creator><creator>Meddings, Nina</creator><creator>Fop, Sacha</creator><creator>Soulé, Samantha</creator><creator>Lee, Tien-Lin</creator><creator>Kazemian, Majid</creator><creator>Garcia-Araez, Nuria</creator><creator>Hector, Andrew L.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3754-8654</orcidid><orcidid>https://orcid.org/0000-0001-9095-2379</orcidid><orcidid>https://orcid.org/0000-0003-4910-3601</orcidid><orcidid>https://orcid.org/0000-0002-9964-2163</orcidid><orcidid>https://orcid.org/0000-0002-1042-6115</orcidid><orcidid>https://orcid.org/0000-0003-4168-6363</orcidid></search><sort><creationdate>20230823</creationdate><title>Combined Electrochemical, XPS, and STXM Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium–Sulfur Batteries</title><author>Fitch, Samuel D. S. ; Moehl, Gilles E. ; Meddings, Nina ; Fop, Sacha ; Soulé, Samantha ; Lee, Tien-Lin ; Kazemian, Majid ; Garcia-Araez, Nuria ; Hector, Andrew L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-7c19050c5777245c55037ff37a9a00a573369b4c8210b7ee2806c63dd24e354a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitch, Samuel D. S.</creatorcontrib><creatorcontrib>Moehl, Gilles E.</creatorcontrib><creatorcontrib>Meddings, Nina</creatorcontrib><creatorcontrib>Fop, Sacha</creatorcontrib><creatorcontrib>Soulé, Samantha</creatorcontrib><creatorcontrib>Lee, Tien-Lin</creatorcontrib><creatorcontrib>Kazemian, Majid</creatorcontrib><creatorcontrib>Garcia-Araez, Nuria</creatorcontrib><creatorcontrib>Hector, Andrew L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitch, Samuel D. S.</au><au>Moehl, Gilles E.</au><au>Meddings, Nina</au><au>Fop, Sacha</au><au>Soulé, Samantha</au><au>Lee, Tien-Lin</au><au>Kazemian, Majid</au><au>Garcia-Araez, Nuria</au><au>Hector, Andrew L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Electrochemical, XPS, and STXM Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium–Sulfur Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-23</date><risdate>2023</risdate><volume>15</volume><issue>33</issue><spage>39198</spage><epage>39210</epage><pages>39198-39210</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Li3N is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective Li3N coatings can be simply formed by the direct reaction of electrodeposited lithium electrodes with N2 gas, whereas using battery-grade lithium foil is problematic due to the presence of a native passivation layer that hampers that reaction. The protective Li3N coating is effective at preventing lithium dendrite formation, as found from unidirectional plating and plating–stripping measurements in Li–Li cells. The Li3N coating also efficiently suppresses the parasitic reactions of polysulfides and other electrolyte species with the lithium electrode, as demonstrated by scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy, and optical microscopy. The protection of the lithium electrode against corrosion by polysulfides and other electrolyte species, as well as the promotion of smooth deposits without dendrites, makes the Li3N coating highly promising for applications in lithium metal batteries, such as lithium–sulfur batteries. The present findings show that the formation of Li3N can be achieved with lithium electrodes covered by a secondary electrolyte interface layer, which proves that the in situ formation of Li3N coatings inside the batteries is attainable.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37552207</pmid><doi>10.1021/acsami.3c04897</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3754-8654</orcidid><orcidid>https://orcid.org/0000-0001-9095-2379</orcidid><orcidid>https://orcid.org/0000-0003-4910-3601</orcidid><orcidid>https://orcid.org/0000-0002-9964-2163</orcidid><orcidid>https://orcid.org/0000-0002-1042-6115</orcidid><orcidid>https://orcid.org/0000-0003-4168-6363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-08, Vol.15 (33), p.39198-39210
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10450643
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Combined Electrochemical, XPS, and STXM Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium–Sulfur Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Electrochemical,%20XPS,%20and%20STXM%20Study%20of%20Lithium%20Nitride%20as%20a%20Protective%20Coating%20for%20Lithium%20Metal%20and%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Fitch,%20Samuel%20D.%20S.&rft.date=2023-08-23&rft.volume=15&rft.issue=33&rft.spage=39198&rft.epage=39210&rft.pages=39198-39210&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c04897&rft_dat=%3Cproquest_pubme%3E2847747785%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a426t-7c19050c5777245c55037ff37a9a00a573369b4c8210b7ee2806c63dd24e354a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847747785&rft_id=info:pmid/37552207&rfr_iscdi=true